Derretimento do gelo na Gronelândia com Jason Box
Jason Box

Alterações Climáticas Abruptas e a Gronelândia — Prof. Jason Box

A mudança climática abrupta está a caminho (…) Os glaciares estão a mover-se mais rápido do que a política – Jason Box

Conteúdo traduzido do vídeo Abrupt Climate Change & Greenland: Prof Jason Box (September 2016) no canal Youtube Understanding Climate Change publicado a 26 de Setembro de 2016.

[expand title=”Abrir a Transcrição aqui:” swaptitle=”Recolher Transcrição” trigclass=”noarrow” tag=”div” id=”com-mcagron”]

Alterações Climáticas Abruptas e Gronelândia — Prof. Jason Box

Gosto da frase “O gelo é o termómetro da Natureza”, quando derrete, quando se acumula, isso conta uma história. O que vemos de múltiplas linhas de evidência independentes é que a mudança climática abrupta está a caminho. Tem sido referido como o taco de hóquei e isso é por a forma ser tipo estável e rasa e depois simplesmente descola. E então, estamos agora a subir na lâmina desse taco de hóquei.
Existe um termo em linguagem convencional, “passo glacial”, algo que se move muito devagar. Os icebergues que se desprendem do manto de gelo da Gronelândia são gelo antigo, gelo com 50.000 anos ou mesmo 100.000 anos, e são necessários muitos milénios para essa neve se acumular e comprimir em gelo glacial. A sua perda é feita a um ritmo muito mais rápido do que o seu restabelecimento. E seria mesmo necessário outra idade do gelo para fazer recrescer esse manto de gelo. Gosto de dizer que os glaciares estão a mover-se mais rápido do que a política.
“O presidente Obama prometeu começar a abrandar a subida dos oceanos,” [gargalhadas do público] “e curar o planeta.” [risos] “A minha promessa é ajudar-vos e às vossas famílias.” [Aplausos] Este era o ex-nomeado à presidência Mitt Romney. É necessário um tipo particular de tolice, ou mais provavelmente manipulação, para se fingir que o que se passa com o planeta não afetará as nossas famílias, que não temos urgência ou responsabilidade.
Todos os anos no fim do Verão fazemos um levantamento das alterações na área dos maiores 45 glaciares da Gronelândia, e mesmo ontem vimos que a maior plataforma de gelo na Gronelândia tem um tributário a norte, e esta racha tem se propagado nos últimos anos em que a acompanhamos e agora este fragmento da plataforma de gelo do tamanho de Manhatan partiu e soltou-se. E aconteceu durante o Verão mais quente do registo, a nordeste da Gronelândia. Enquanto mapeávamos os 45 maiores glaciares da Gronelândia, a perda de área do tamanho de Manhatan apenas deste único glaciar era bastante anormal. Não é habitual obter-se tanto de um único glaciar. E então, é tipo um evento espetacular, também por ter acontecido durante um Verão quente recorde.
O norte da Gronelândia é a localização das maiores plataformas de gelo restantes, e neste glaciar em particular, é na realidade a maior plataforma de gelo que resta no Ártico. É um dos braços laterais do glaciar, provavelmente não puxa tão atrás na plataforma de gelo mas no grau em que o faz, quando se destacar completamente, o que pode acontecer muito em breve, haverá um pouco menos de resistência à deriva para esse glaciar. E portanto, a história é a da perda do efeito de suporte na frente destes glaciares, este tipo de stress contrário que equilibra o stress na direção para baixo, do gelo que tenta sair para o mar. Quanto mais gelo sair na frente menos resistência haverá, e mais depressa a Gronelândia perderá o seu gelo.Recolher Transcrição[/expand]

Estes conteúdos são traduzidos e/ou legendados por voluntários motivados pelo desejo de facilitar o conhecimento a todos e assim melhorar as nossas vidas. Qualquer pessoa pode fazer o mesmo.
Para iniciar ou sugerir uma tradução, clique aqui.
Standard
Calor e mancha de água fria do degelo invadem o Atlântico
Sam Carana

Calor do Oceano Invade o Atlântico Norte

A extensão do gelo marinho do Ártico a 19 de Junho de 2016 estava num recorde mínimo para a época do ano, como a imagem abaixo mostra.

Comparação da extensão do gelo marinho ao longo dos anos mostra recorde mais baixo para a época do ano - Junho 2016

Extensão do gelo do mar no Ártico com o último valor de 9,7 milhões de quilómetros | Comparação das médias de 1980, 1990, 2000, 2012, 2007, 2015 e 2016.

Não só está a extensão do gelo do mar no Ártico num valor baixo recorde para a época do ano, o gelo do mar também está rapidamente a ficar mais fino, mais fragmentado, inferior em concentração e de cor mais escura.

Gelo a norte da Gronelândia com rachas a quebrar.

Rachas no gelo do mar a norte da Gronelândia a 19 de junho de 2016, criado com a imagem Arctic-io

Na manhã de 20 de Junho de 2016, fortes libertações de metano foram registadas sobre a água a norte da Gronelândia, bem como a leste da Gronelândia, como ilustrado pela imagem abaixo.

Níveis de metano libertado no mar do Ártico em Junho 2016

A imagem abaixo mostra que, na manhã de 20 de Junho de 2016, os níveis médios globais de metano aumentaram em várias partes por bilhão numa grande faixa de altitude, em comparação com os dois dias anteriores. Os níveis de metano nas altitudes selecionadas para os dias de Julho de 2015 e Dezembro de 2015, foram adicionados para referência.

Comparação dos níveis de metano médios globais de 2015 e 2016

Clique na imagem para ampliar | Níveis médios de Metano para os dias selecionados comparando Dezembro e Julho de 2015 e Junho de 2016, com dados da NOAA

As temperaturas no Ártico estão a aumentar, como ilustrado pela imagem abaixo, mostrando que a 19 de Junho de 2016 as temperaturas estavam tão elevadas quanto 31.4°C ou 88.4°F sobre o rio Mackenzie (círculo verde), que termina
no Oceano Ártico (e, assim, aquece o Oceano Ártico ali).

Temperatura elevada no Ártico, no rio McKenzie, aquece o oceano

Temperaturas tão elevadas quanto 41.4°C no rio McKenzie (círculo verde) que vai dar ao Oceano Ártico e contribui para o seu aquecimento.

A 20 de Junho de 2016, o Sol irá atingir o seu ponto mais alto (Solstício), e o Árctico terá 24 horas de luz solar, ou seja, no Círculo Ártico (latitude 66,56° norte) ou superior. O Ártico tem cerca de 20 milhões (20.000.000) de quilómetros quadrados (7.700.000 milhas quadradas) de área e abrange cerca de 4% da superfície da Terra. A insolação durante os meses de Junho e Julho é maior no Ártico do que em qualquer outro lugar na Terra, como ilustra a imagem abaixo, por Pidwirny (2006).

Exposição do Ártico à luz solar ao longo do ano e no solstício

A temperatura da superfície do mar perto de Svalbard estava tão elevada quanto 55°F (12,8°C, no círculo verde) a 14 de Junho de 2016, uma anomalia de 19,6°F (10,9°C) em relação a 1981-2011, conforme ilustrado pela imagem abaixo.

Temperaturas elevadas do mar no Ártico

12.5°C de temperatura registados no mar de Svalbard no Ártico, uma diferença de 10.9°C em relação à média de 1981-2011.

Mancha / Tampa de água fria sobre o Atlântico e Pacífico

Manchas de água fria no Atlântico e Pacífico reveladas pela imagem da NASA com as anomalias da temperatura em relação a 1951-1980

A imagem acima, criada com nullschool.net, mostra ainda que a tampa de água fria que vinha crescendo de forma tão proeminente em extensão sobre o Atlântico Norte ao longo dos últimos anos, tem diminuído substancialmente. Em comparação, a área fria sobre o Pacífico Norte tem ficado maior. Isto é ainda confirmado pela imagem à direita, criado com mapas da NASA que mostram anomalias de temperatura do oceano para Maio de 2016.

A água do degelo fluiu em abundância da Gronelândia em 2016, como ilustrado pela imagem da NSIDC.gov abaixo. O escorrimento a partir do Alasca e da Sibéria para o Pacífico parece menor, em comparação, do que o escorrimento para o Atlântico Norte. Então, como pode ser que a área fria no Pacífico Norte tem ficado maior do que a área fria no Atlântico Norte?

Extensão do degelo / derretimento na Gronelândia em 2016, comparado a 1981-2010

Poderia haver outro factor que influencia o tamanho dessas áreas frias no Atlântico Norte e no Pacífico Norte?

A imagem abaixo, criada com imagens da NOAA, dá uma comparação entre a situação a 1 de Junho de 2015 (em cima) e 1 de Junho de 2016 (em baixo), mostrando anomalias em relação a 1961-1990.

Mancha de água fria do degelo sobre Atlântico e Pacífico

A diferença é surpreendente, especialmente quando considerando a força das anomalias mais frias (em relação a 1961-1990). Para além de água do degelo, algo mais deve estar a influenciar o tamanho e a força dessas anomalias no Atlântico Norte e no Pacífico Norte de maneiras diferentes. Muito provavelmente, a diferença é causada pela Correia Transportadora Oceânica (ou circulação termoalina), que está a levar água quente para o Atlântico Norte, enquanto leva água fria para fora do Atlântico Norte. No Pacífico Norte, está a fazer o oposto, ou seja, a trazer água fria, enquanto transporta água quente para fora do Pacífico Norte.

circulação termoalina aquece o Atlântico e arrefece o Pacífico alterando as manchas de água fria do degelo

A Correia Transportadora Oceânica ou circulação termoalina, aquece o Oceano Atlântico enquanto arrefece o Pacífico, revelando alterações nas manchas de água fria do degelo.

[Esta animação é um arquivo de 2,3 MB, que pode demorar algum tempo para carregar totalmente]

Em conclusão, existem vários fatores que estão a influenciar a situação, incluindo a influência que tem o El Niño e o impacto que a La Niña vai ter, e as mudanças nas correntes oceânicas. Mesmo que a correia transportadora possa ficar mais lenta, mais importante do que a sua velocidade é a quantidade de calor que vai levar para o Oceano Ártico. A imagem abaixo mostra uma tendência a apontar para a água no Hemisfério Norte a ficar 2 graus Celsius mais quente bem antes do ano 2030, em comparação com a média do século 20.

Temperaturas no Hemisfério Norte em 2016 e previsão futura

Se essas tendências continuarem ou mesmo se reforçarem, água cada vez mais quente será transportada do Atlântico Norte para o Oceano Ártico, contrariando o possível arrefecimento devido ao escorrimento resultante do degelo. Como o afluxo no Atlântico é cerca de 10 vezes maior em volume do que o afluxo no Pacífico, o resultado será ainda mais aceleração no aquecimento do Oceano Ártico.

Um Oceano Ártico mais quente irá acelerar o declínio do gelo do mar, fazendo com que mais luz solar seja absorvida pelo Oceano Ártico, sendo um dos mecanismos de auto-reforço (feedbacks) que estão a acelerar ainda mais o aquecimento do Oceano Ártico. O feedback # 14 refere-se ao calor (latente), que anteriormente foi para a fusão. Com o desaparecimento do gelo do mar, uma proporção crescente do calor do oceano é absorvida pelo Oceano Ártico.

Energia na fusão do gelo e aquecimento da águaÀ medida que o gelo do mar aquece, 2,06 J/g de calor vão para cada grau Celsius de aumento da temperatura do gelo. Enquanto o gelo está a derreter, toda a energia (em 334J/g) vai para transformar o gelo em água e a temperatura mantém-se a 0°C (273.15K, 32°F).

Uma vez que todo o gelo se transforme em água, todo o calor subsequente vai para o aquecimento da água, a 4,18 J/g para cada grau Celsius que a temperatura da água aumente.

A quantidade de energia absorvida pela fusão do gelo é tanta quanto a necessária para aquecer uma massa equivalente de água de zero a 80°C.

Comparação da espessura / concentração do gelo marinho entre 2012 e 2016

O gelo do mar está em má forma, como também ilustrado pela comparação da concentração acima, entre 24 de Junho de 2012 e uma previsão para 24 de Junho de 2016.

Comparação da espessura do gelo marinho no Ártico entre 2012-2016

Como a comparação acima mostra, o gelo do mar está agora também muito mais fino do que estava em 2012. O gelo marinho espesso costumava se estender metros abaixo da superfície do mar no Ártico, onde poderia consumir enormes quantidades de calor do oceano através do derretimento deste gelo em água. Como tal, o gelo marinho espesso agia como um tampão. Ao longo dos anos, a espessura do gelo do mar no Ártico diminuiu da forma mais dramática. Isto significa que o tampão que é utilizado para consumir grandes quantidades de calor do oceano levado pelas correntes marinhas para o Oceano Ártico, tem desaparecido agora em grande parte.

Calor do oceano vai destabilizar os hidratos de metano no fundo do mar (leito marinho) no Ártico

Espessura do gelo antes de 2012 | Gelo pouco espesso após 2012 | Calor do Oceano | Hidratos de Metano | Efeito Tampão desaparece

O perigo é que o calor vai chegar ao leito marinho (fundo do mar) e vai desestabilizar os hidratos de metano contidos nos sedimentos no fundo do mar do Oceano Ártico.

A situação é calamitosa e apela a uma acção abrangente e eficaz, conforme descrito no Plano Climático.

Traduzido do original Ocean Heat Overwhelming North Atlantic de Sam Carana, publicado no blogue Arctic News, a 17 de Junho de 2016.

Standard
Anomalia da temperatura de superfície no Ártico em Abril de 2016
Sam Carana

Aquecimento Recorde no Ártico

A 3 de abril de 2016, a extensão do gelo marinho do Ártico estava num valor baixo recorde para a época do ano, informa a National Snow and Ice Data Center (NSIDC).

Extensão do gelo marinho no Ártico num recorde mais baixo

A imagem em baixo, criada a partir de uma imagem do site JAXA, dá-nos uma atualização quanto à extensão do gelo marinho.

Gelo marinho no Ártico com extensão mínima recorde

Para além da extensão do gelo do mar, a área do gelo do mar também é importante. Para mais sobre o que constitui “cobertura de gelo” e o que é extensão do gelo do mar (versus área do gelo do mar), consulte esta página de Perguntas Frequentes e Respostas da NSIDC.

A 2 de abril de 2016, a área de gelo no mar no Hemisfério Norte estava num valor baixo recorde para a época do ano, informa o Cryosphere Today.

A perda de área do Gelo marinho no Ártico está um mês adiantada

Em 2015 ainda havia mais área de gelo do mar do que há agora quando estávamos meio mês mais tarde (15 dias) no ano. Em 2012, ainda havia mais gelo marinho quando estávamos 25 dias mais tarde no ano. Por outras palavras, o declínio da área de gelo do mar está quase um mês adiantado em relação à situação em 2012.

Andrew Slater, cientista na NSIDC criou o gráfico em abaixo, de dias de graus de congelamento em 2016 em comparação com outros anos na Latitude 80°N. Vejam o site de Andrew e esta página para mais informação.

Número de dias com temperaturas de congelamento no Ártico em 2016

Anomalia no número de dias de congelamento, ou seja, dias com temperaturas abaixo de zero graus (a 2m de altitude), no Ártico (80ºN), para o 1º dia de cada mês comparado com a média de outros anos.

O Ártico aqueceu mais do que noutros lugares na Terra. As temperaturas de superfície ao longo dos últimos 365 dias estiveram mais de 2,5°C ou 4,5°F mais elevadas do que em 1981-2010.

Anomalia da temperatura de superfície no Ártico em Abril de 2016

A imagem abaixo compara a espessura do gelo do mar a 3 de abril para os anos de 2012, 2015 e 2016 (os paineis da esquerda, centro e direita, respectivamente).

Expessura do gelo marinho no Ártico comparada com anos anteriores

Idade do gelo do mar do Ártico caiu dramaticamente ao longo dos anosA espessura do gelo do mar caiu dramaticamente ao longo dos anos, como ilustrado na imagem à direita, do NSIDC, mostrando a idade do gelo do mar do Ártico para a semana de 4 a 10 de Março, desde 1985 a 2016.

As temperaturas elevadas que atingiram o Oceano Ártico ao longo dos últimos 365 dias fazem com que a aparência do gelo do mar no Ártico este ano não seja boa.

O El Niño ainda está forte com temperaturas elevadasComo ilustrado na imagem à direita, o presente El Niño ainda está forte, com temperaturas acima dos 100°F [37.7°C] registadas em três continentes.

O ano de 2016 já está a ganhar forma como o ano mais quente dos registos até agora.

As temperaturas parecem preparadas para subirem rapidamente nos próximos meses, no Hemisfério Norte em grande parte e no Ártico em particular.

A imagem em baixo mostra que durante um período de 90 dias de 13 de Janeiro a 11 de Abril de 2016, a maior parte do Oceano Ártico esteve mais do que 6°C (10.8°F) mais quente do que a média de 1981-2011.

Anomalia da temperatura no Ártico Janeiro a Abril 2016 em relação a 1981-2011

A imagem da DMI em baixo mostra o degelo recente na Gronelândia até 11 de Abril de 2016. Os mapas no painel da esquerda mostram áreas onde o derretimento ocorreu a 10 de Abril e 11 de Abril de 2016. O gráfico no painel direito mostra o degelo em 2016 (linha azul), em contraste com a média de 1990-2013 (o eixo vertical reflete a percentagem da área total do gelo onde o derretimento ocorreu).

Degelo na Gronelândia comparado com média de 1990-2013

Como um estudo recente confirma, os mantos de gelo podem conter enormes quantidades de metano na forma de hidratos e gás livre. Muito metano pode escapar devido ao derretimento e fratura durante as variações meteorológicas.

Temperaturas elevadas na Gronelandia e comparadas a 1979-2000O rápido degelo na Gronelândia parece que vai continuar. As previsões para 12 de Abril de 2016 à direita mostram anomalias das temperaturas no topo da escala (20°C ou 36°F)para a maior parte da Gronelândia e Bacia Baffin, enquanto o Ártico como um todo é atingido por uma anomalia da temperatura de mais de 5°C (mais de 9°F), comparado com 1979-2000.

Para além do mais, as temperaturas do oceano estão muito altas presentemente. Estas temperaturas elevadas, junto com a condição precáŕia do gelo do mar, fazem com que as chances sejam para que o gelo do mar tenha desaparecido na sua maior parte em Setembro.

Temperaturas anómalas no Ártico

A imagem à direita mostra as anomalias da temperatura de superfície acima da latitude 60°N a 4 de Abril de 2016.

A imagem em baixo mostra que, a 7 de Abril de 2016, a superfície do mar de Barrents esteve tão quente quanto 10.1°C ou 50.2°F, uma anomalia de 9.4°C ou 16.9°F a comparar com a média de 1981-2011 (na localização marcada pelo círculo verde em cima à direita), enquanto houveram anomalias tão elevadas quanto 11.3°C ou 20.3°F ao largo da costa da América do Norte (círculo verde à esquerda).

A linha branca mostra o percurso aproximado da corrente fria de saída, enquanto a linha vermelha mostra o percurso aproximado da corrente quente de entrada.

As temperaturas elevadas no Mar de Barrents dão indicação do calor do oceano a viajar em direção ao Oceano Ártico, enquanto que as anomalias de temperaturas elevadas na costa este da América do Norte dão indicação do calor que se está a acumular ali. Muito desse calor vai para o Oceano Ártico nos próximos meses.

Correntes quentes aumenta as temperaturas no Oceano Ártico

Temperaturas da superfície do mar elevadas no Pacífico em AbrilNo Pacífico, as anomalias da temperatura da superfície do mar em relação a 1981-2011 foram tão elevadas quanto 11.6°C ou 20.8°F perto do Japão a 11 de Abril de 2016 (ver imagem à direita), dando indicação da grande quantidade de calor adicional que existe agora nos oceanos do Hemisfério Norte. A perspectiva é que as temperaturas vão aumentar durante os próximos meses para níveis ainda mais elevados do que têm estado no último ano (vejam o post anterior sobre temperaturas em Junho de 2015 no Ártico).

O gelo do mar funciona como um tampão, absorvendo calor e mantendo a temperatura da água no ponto de congelamento. Sem um tal tampão, mais calor irá fazer com que a temperatura da água aumente rapidamente. Além disso, menos gelo do mar significa que menos luz solar é refletida de volta para o espaço e ao invés mais luz solar é absorvida pelo Oceano Ártico.

Estes são apenas alguns dos muitos mecanismos de realimentação que aceleram o aquecimento no Ártico. A água quente que atinge o fundo do mar do Oceano Ártico pode penetrar os sedimentos que podem conter enormes quantidades de metano na forma de hidratos e gás livre, desencadeando uma libertação abrupta de metano em quantidades gigantescas, escalando em aquecimento fugidio, e a posterior destruição e extinção em larga escala.

Numa escala de 10 anos, a libertação de metano no momento presente de todas as fontes antropogénicas já excede todas as emissões de dióxido de carbono como agentes de aquecimento; ou seja, as emissões de metano já são mais importantes do que as emissões de dióxido de carbono no conduzir do ritmo atual de aquecimento global.

A imagem em baixo mostra que o crescimento nos níveis de metano tem acelerado recentemente; uma linha de tendência aponta para um duplicar dos níveis de metano por volta do ano de 2040. Contrariamente ao dióxido de carbono,o potencial de aquecimento global do metano aumenta à medida que mais é libertado. O tempo de vida do metano pode ser estendido a décadas, em particular devido à depleção de hidróxilo na atmosfera.

Taxa de crescimento dos níveis de Metano

A situação é calamitosa e apela a uma acção abrangente e eficaz, conforme descrito no Plano Climático.

Comentário de Albert Kallio:
Mais poderia ter sido adicionado do último relatório de Março sobre o gelo do mar do Ártico do National Snow and Ice Data Center (NSIDC), a visão geral da perda massiva de gelo do mar, porque o recorde mínimo de cobertura de neve e gelo está a coincidir com o recorde mínimo de cobertura de neve terrestre. A previsão do NSIDC de que devido às superfícies escuras terem aumentado tanto, levarão facilmente à perda de mais gelo marinho. De facto, a situação de 2016 é ainda pior do que o anterior recorde de 2012 quando a cobertura de neve era muito maior. O mesmo em 2007 quando a área do gelo marinho era ligeiramente menor, havia muito mais cobertura terrestre de neve. Para além disso, nem 2007 nem 2012 ocorreram durante um forte El Niño como o de 1998. O El Nino de 2015-2016 é o mais forte de sempre, acompanhado também pelo oceano Índico, Atlântico e Oceano do Sul em torno da Antártida, todos muito quentes. Por vezes as temperaturas da água do mar na Antártida estavam também elevadas levando ao segundo mais pequeno gelo marinho Austral de Verão a determinado ponto. A área do gelo do mar, também em torno da Antártida, tem estado mais pequena que a média na maior parte do tempo, apesar do aumento em água do degelo e salinidade reduzida – devido a temperaturas elevadas. Todos estes fatores adicionais deviam ser adicionados nas suas conclusões sem esquecer de mencionar que o calor adicionado ao sistema terrestre está a criar uma rutura no Vórtice Polar, à parte das correntes de jato terem começado a misturar-se em outros padrões de ventos atmosféricos. Notem também o fluxo aumentado de gelo marinho através do estreito de Fram devido à baixa viscosidade espacial do gelo marinho, que também resulta de uma maior ação das ondas, mistura vertical do oceano pelo vento, gelo marinho mais fino que se parte mais facilmente e colapsa, bem como por ser na sua maior parte gelo sazonal (contendo vestígios de sais que tornam as ligações químicas nos cristais de gelo mais fracas e frágeis, derretendo mais facilmente). – Albert Kallio

Traduzido do original Record Arctic Warming de Sam Carana, publicado no blogue Arctic News, a 5 de Abril de 2016.
Standard
James Hansen

James Hansen: Derretimento do Gelo, Aumento do Nível do Mar e Supertempestades

Vídeo legendado de James Hansen resumindo o seu estudo mais recente sobre o degelo, a subida do nível do mar e super-tempestades no Atlântico.

Conteúdo traduzido do original Ice Melt, Sea Level Rise and Superstorms Video Abstract.

[expand title=”Transcrição:” swaptitle=”Recolher Transcrição” trigclass=”noarrow” tag=”div” id=”com-hansenestudo”]

James Hansen: Derretimento do Gelo, Aumento do Nível do Mar e Supertempestades

Olá! Sou Jim Hansen, diretor do Programa de Consciencialização para a Ciência Climática e Soluções pelo Instituto da Terra da Universidade de Columbia. Quero discutir algumas implicações do artigo Derretimento do Gelo, Elevação do Nível do Mar & Supertempestades que foi publicado no Atmospheric Chemistry and Physics um artigo no qual tenho 18 excepcionais co-autores americanos e internacionais. Descobrimos informações num entendimento parcial dos feedbacks no sistema climático, especificamente interações entre o oceano e os mantos de gelo. Estes feedbacks levantaram questões sobre daqui a quanto tempo vamos passar pontos de não retorno nos quais trancamos consequências que não podem ser revertidas em nenhuma escala de tempo que as pessoas se preocupem. As consequências incluem aumento do nível do mar em vários metros o qual estimamos que possa ocorrer este século, ou, o mais tardar, no próximo século, se as emissões de combustíveis fósseis continuarem a um nível elevado. Isso significaria a perda de todas as cidades costeiras, a maioria das grandes cidades do mundo e toda a sua história. Uma ameaça mais imediata é a probabilidade de paralisação das circulações de reversão dos oceanos no Atlântico Norte e Oceanos do Sul. É aí que as supertempestades entram. Deixe-me explicar. Nós usamos modelagem climática, dados do paleoclima – que é a antiga história do clima – e observações modernas do oceano e das camadas de gelo para estudar os efeitos do derretimento do gelo nas camadas de gelo na Groenlândia e da Antártida. Toneladas de gelo que se estendem desde a Antártida ao Oceano Antártico. A Gronelândia e a Antártida estão a começar a derreter devido ao aquecimento global. Até agora, é apenas uma pequena fração minúscula das camadas de gelo que derreteu. Contudo, esta água fresca do derretimento que corre para o Atlântico Norte e para o Oceano Antártico, já está a ter efeitos importantes. Concluímos que a água fresca e leve adicionada às camadas superiores do oceano já está a começar a desligar a formação de águas profundas no Atlântico Norte e a formação de águas de fundo na Antártida. Isto terá consequências enormes em décadas futuras se se permitir que ocorra uma paralisação completa. O IPCC das Nações Unidas, o Painel Intergovernamental para a Mudança do Clima, não relata esses efeitos, por duas razões: Em primeiro lugar, a maioria dos modelos utilizados pelo IPCC simplesmente excluem o derretimento do gelo. Em segundo lugar, concluímos que a maioria dos modelos, incluindo o nosso, são menos sensíveis do que o mundo real à água fresca adicionada. Porque a maioria dos modelos têm mistura oceânica de pequena escala excessiva, o que reduz o efeito. A manifestação à superfície do abrandamento das circulações profundas é o arrefecimento no Atlântico Norte a sudeste da Gronelândia e no Oceano Antártico. Estes arrefecimentos são proeminentes no nosso modelo até meados do século 21. Contudo, por múltiplas razões, concluímos que o mundo real responde mais rápido a água fresca do que os modelos o fazem. Primeiro, vamos observar que o arrefecimento do Atlântico Norte se a circulação de reversão se desligar por completo, vai ter grandes efeitos. Os trópicos continuam a aquecer com o aumento de CO2. Se a água fresca da Gronelândia desligar a formação de águas profundas e esfriar o Atlântico Norte em vários graus, o aumento do gradiente horizontal de temperatura irá conduzir super-tempestades, mais fortes do que qualquer uma nos tempos modernos. O inferno vai cair no Atlântico Norte e terras vizinhas. Tal situação ocorreu no último período interglacial 118 mil anos atrás. Os trópicos estavam cerca de um grau mais quentes do que hoje, porque o eixo de rotação da Terra estava inclinado menos do que hoje. Dados oceânicos dos núcleos de gelo mostram que a formação de águas profundas se desligou, o Atlântico Norte esfriou, e há evidência de super-tempestades poderosas durante esse tempo. Poderosas o suficiente para ondas gigantes lançarem mega pedregulhos de mil toneladas para a costa nas Bahamas. Alguns cientistas acreditam que essas pedras podem ter sido arremessadas por um tsunami mas apresentamos várias linhas de evidência de que as pedras e outras características geológicas são melhor explicadas como o resultado de supertempestades. Um ponto importante é que se nós deixarmos que o derretimento do gelo da Gronelândia se torne grande o suficiente para desligar completamente o AMOC, a circulação de revolvimento do Atlântico, será permanente, tanto quanto ao público diz respeito. Leva vários séculos para o AMOC se mover novamente. Contudo, as super-tempestades não serão a consequência mais importante do aquecimento global, se continuar a crescer. O efeito mais importante será a subida do nível do mar. Também aqui, a análise mais completa deve ter em conta os dados do paleoclima, que mostra que os mantos de gelo, quando se desintegram, podem ir rapidamente, de forma não linear, produzindo uma elevação do nível do mar de vários metros num século. Mesmo quando o forçamento natural do clima é mais fraco do que o forçamento humano. Mostramos a partir de dados paleoclimáticos que a maioria dos modelos são mais letárgicos que o mundo real, nos quais há conhecimento de que o nível do mar aumentou rapidamente muitas vezes. Assim, ao invés de usar um modelo de camadas de gelo, simplesmente assumimos que quando o aquecimento ocorre accionado por um forçamento climático crescente, a taxa de fusão do gelo vai crescer de forma não linear. Testamos várias taxas alternativas de crescimento. O que encontramos são feedbacks amplificadores, justamente o que é necessário para alimentar o aumento não-linear do derretimento do gelo. A água do derretimento na Gronelândia reduz a densidade da água de superfície. Consequentemente, reduz o afundamento de água para o oceano profundo. À medida que a água do derretimento aumenta, ela desliga o transportador oceânico, como Wally Broecker lhe chama. Mais importante para o nível do mar é o que está a acontecer ao redor da Antártida. O afundar da água fria salgada pesada perto da costa da Antártida normalmente forma a água de fundo da Antártida, portanto, trazendo também água relativamente quente à superfície onde liberta calor para a atmosfera no espaço. Agora, à medida que a água fresca derretida do gelo das camadas de gelo da Antártida aumenta, ela tende a colocar uma tampa fria de baixa densidade sobre o Oceano Antártico. Isso reduz a troca com a superfície de modo que o calor permanece no oceano, aumentando a temperatura da água do mar à profundidade das plataformas de gelo um feedback amplificador. Na perspectiva global, as lentes de água doce fria ao redor da Antártida aumentam desequilíbrio energético do planeta. A energia adicional vai para o oceano, onde está disponível para derreter as plataformas de gelo. Estes feedbacks apoiam a nossa conclusão de que o degelo em resposta ao forte forçamento será não-linear. Estes feedbacks com a água do degelo a conduzir o aquecimento abaixo da superfície também nos ajudam a entender e ganhar uma imagem consistente das rápidas oscilações climáticas não-lineares no registo paleoclimático. Os dados do paleoclima deixam claro que quando as camadas de gelo derretem, elas podem ir rápido. Contudo, não sabemos o tempo característico para a resposta não linear da camada de gelo aos forçamentos climáticos crescentes. Eventualmente, modelos das camadas de gelo poderão dar-nos uma resposta, mas, por agora, o nosso melhor guia são observações. Infelizmente, os registros da crescente perda de massa anual pelas camadas de gelo são curtos. Os dados da Groenlândia podem caber tanto em tempos de duplicação de 10 anos como 20 anos, mas a Gronelândia já está a perder várias centenas de quilómetros cúbicos de gelo por ano. Feedbacks para a Gronelândia, com o seu derretimento de superfície, são diferentes dos da Antártida, mas existem vários feedbacks amplificadores. A resposta da Gronelândia para o aquecimento global será não-linear, mas provavelmente com um tempo de duplicação característico diferente. A perda de massa na Antártida é menor. A maioria do derretimento, até agora, é nas plataformas de gelo, As quais não aparecem na variação da massa em medições da gravidade por satélite. Contudo, à medida que as plataformas de gelo desaparecem, a descarga do gelo não flutuante vai acelerar. Se a perda de massa da camada de gelo tem um tempo de duplicação de dez anos, o aumento do nível do mar numa escala de metro seria alcançado em cerca de 50 anos, e o aumento do nível do mar em vários metros uma década mais tarde. Vinte anos de tempo de duplicação exigiria cerca de uma centena de anos. Os registos de dados são muito curtos, mas se esperarmos até que o mundo real se revele de forma clara, poderá ser tarde demais para evitar o aumento do nível do mar de vários metros e a perda de todas as cidades costeiras. Duvido que tenhamos passado um ponto de não retorno, mas, francamente, não temos certeza disso. Há um situação análoga, mas eu acredito mais iminente com a paralisação das circulações oceânicas de revolvimento. As regiões frias do sudeste da Gronelândia e em torno da Antártida são sinais do início do desligar da AMOC no Atlântico Norte e do SMOC no Oceano Antártico. Sabemos que os efeitos do degelo parecem estar a ocorrer uma ou duas décadas mais cedo no mundo real do que no nosso modelo. Por que é que os modelos são menos sensíveis às quantidades de hoje de água derretida nos oceanos? Nós apresentamos evidência de excessiva mistura do oceano de pequena escala em muitos modelos, incluindo no nosso. Um diagnóstico chave é o tempo de resposta do clima. Em 100 anos, o nosso modelo atinge apenas 60% da sua resposta de equilíbrio. Fui verificar outros três modelos climáticos principais, dois americanos e um britânico, encontrando uma resposta lenta similar. Contudo, temos mostrado que o grande desequilíbrio energético da Terra requer a resposta do clima de 100 anos para ficar em cerca de 75%, se a sensibilidade climática de equilíbrio for cerca de 3 graus Celsius como sugerem os dados paleoclimáticos. A explicação para o porquê da resposta de superfície ser tão lenta no modelo é que o oceano no modelo mistura o calor demasiado rapidamente para o oceano profundo. Esta mesma mistura excessiva faz com que os modelos sejam menos sensíveis aos membros de água doce na superfície do oceano, que também tendem a misturar rápido demais. Há outros dados além do desequilíbrio energético da Terra que apoiam esta interpretação, incluindo a sensibilidade do paleoclima ao forçamento da água fresca. Contudo, há um artigo recente que é especialmente importante, por Winton e co-autores em 2014, que mostrou que um modelo com uma resolução espacial de um décimo de grau, sensível o suficiente para resolver os movimentos do oceano em pequena escala e evitar a mistura parametrizada, produz uma resposta da temperatura de superfície cerca de um quarto maior após cinquenta a cem anos, o que é consistente com a nossa interpretação. Seria valioso se todos os modelos relatassem a sua função de resposta do clima de superfície bem como a sua sensibilidade ao equilíbrio climático, e examinassem a sensibilidade do modelo a uma taxa padrão rapidamente crescente de ejeção de água do degelo. A relevância é que eu acredito que já estamos a testemunhar o início deste arrefecimento no sudeste da Gronelândia e do arrefecimento ao redor da Antártida, em resposta à água fresca do derretimento do gelo. Nesse caso, o arrefecimento observado no sudeste da Gronelândia e o aquecimento adicional ao longo da costa leste dos Estados Unidos não são flutuações naturais. Quando o AMOC desacelera, causa ambos. Esta interpretação implica que a a água de derretimento da Gronelândia já está a ter efeitos significativos. A água quente ao longo da costa leste é a razão de o Sandy ter mantido ventos com força de furacão durante todo o caminho até à área de Nova Yorque. O Atlântico, nas proximidades, estava cerca de 3 graus Celsius mais quente do que o normal. Esta água do oceano invulgarmente quente também tem sido capaz de fornecer a humidade para as tempestades de neve recordes recentes. Estes são pequenos efeitos, em comparação com o que acontece se o AMOC se desliga completamente. Então a pergunta novamente: passámos um ponto de não retorno? É certo que o derreter do gelo aumente de modo que o desligamento do AMOC seja uma conclusão passada? Eu duvido, mas é concebível dependendo de quão rápido podemos abrandar o forçamento climático provocado pelo homem. Acho que a conclusão é clara. Estamos numa posição de potencialmente causar danos irreparáveis ​​aos nossos filhos, netos e gerações futuras. Esta é uma situação trágica, por ser desnecessária. Já podíamos ter suprimido gradualmente as emissões de combustíveis fósseis se apenas parássemos de permitir à indústria de combustíveis fósseis usar a atmosfera como uma lixeira livre para os seus resíduos. Se recolhêssemos uma taxa das empresas de combustíveis fósseis que aumentasse gradualmente, poderíamos passar progressivamente para a fase das energias limpas. Se bem feito, estimularia a economia e criaria empregos. Mas isso é uma história para outro dia, mas eu quero fazer um ponto final. Esta é uma história complexa, mas uma com implicações práticas importantes. Descubro que o público às vezes interpreta mal as nossas discussões da ciência, o como a pesquisa é feita. Ceticismo é a força vital da Ciência. Você pode ter certeza que muitos cientistas, na verdade a maioria dos cientistas, vai encontrar alguns aspectos no nosso longo estudo que iriam interpretar de forma diferente. Isso é perfeitamente normal. Leva tempo para que as conclusões sejam acordadas e os detalhes resolvidos. Então, depois de ter falado com um cientista sobre este tópico, pergunte-lhe a ele, ou a ela, uma pergunta final: “Você concorda que chegámos a uma situação perigosa?” “Você acha que podemos estar a aproximar-nos de um ponto de não retorno, uma situação em que nossos filhos herdarão um sistema climático passando por mudanças que estão fora do seu controlo, mudanças que irão causar-lhes danos irreparáveis? Essa é a linha de fundo. Muito obrigado pela atenção. O mais recente estudo do Dr. James E. Hansen, Derretimento do Gelo, Aumento do Nível do Mar e Supertempestades.Recolher Transcrição[/expand]

Standard
James Hansen, Peter Sinclair

Painel All Star da Ciência Climática Deixa Cair uma Bomba de Estudo

O artigo bombástico cuja pré-publicação James Hansen lançou no verão passado passou agora a revisão para publicação, na revista Journal Atmospheric Chemistry and Physics. (grátis on-line)

O artigo é significante para os leitores deste blog porque, há um ano atrás, eu produzi um vídeo descrevendo observações no Atlântico Norte que são consistentes com uma das principais premissas do artigo, um abrandamento da Circulação de Revolvimento do Atlântico [também conhecida por circulação termoalina do Atlântico ou AMOC – Atlantic Meridional Overturning Circulation, em inglês] – com os cientistas Stefan Rahmstorf, Michael Mann, e Jason Box. Publiquei esse vídeo no fundo desta publicação.
O Dr. Mann é citado no Washingon Post, (abaixo) expressando algumas reservas quanto ao novo estudo, logo, há lá um espaço para acompanhamento.

Acima, na minha entrevista de dezembro, Hansen deu-nos uma rápida amostra. Em baixo, o seu novo vídeo [Legendado em Português] representa uma descrição mais detalhada e ilustrada.

PBS Nova:

Os oceanos do mundo poderiam subir catastroficamente tão cedo quanto em 50 anos a partir de agora, de acordo com um novo estudo publicado esta manhã em Atmospheric Chemistry and Physics.

Os pesquisadores por trás do papel – o Dr. James Hansen e 18 co-autores – olharam para o passado de há 120.000 anos atrás, a última vez que a Terra aqueceu aproximadamente na mesma medida que o aquecimento presente. (As temperaturas globais estão agora 1˚C, ou 1.8˚F, acima dos níveis pré-industriais.) Naquela época, o aquecimento natural libertou quase toda a água que estava trancada em camadas de gelo polares, aumentando os níveis do mar rapidamente em 20 a 30 pés.

Washington Post:

Um grupo de cientistas influente liderado por James Hansen, o ex-cientista da NASA muitas vezes creditado por ter chamado a primeira grande atenção para as alterações climáticas em 1988 num depoimento ao Congresso, publicou um estudo climático calamitoso que sugere que o impacto do aquecimento global será mais rápido e mais catastrófico do que geralmente previsto.

A pesquisa invoca colapso das camadas de gelo, mega-tempestades violentas e até mesmo o arremesso de pedregulhos por ondas gigantes, na sua procura por sugerir que até mesmo 2 graus Celsius de aquecimento global acima dos níveis pré-industriais seria demais. Hansen chamou-lhe o trabalho mais importante que ele alguma vez fez.

O artigo abrangente, com 52 páginas de comprimento e 19 autores, baseia-se em evidências da mudança climática antiga ou “paleo-climatologia,” assim como em experiências climáticas usando modelos de computador e algumas observações modernas. Chamar-lhe de “estudo” realmente não está bem correto. É, na verdade, uma síntese de uma ampla gama de evidências antigas e novas.

“Acho que quase toda a gente que está realmente familiarizada com ambas [evidências] paleo e modernas está agora muito preocupada por estarmos a aproximar-nos, se já não ultrapassámos, dos pontos em que teremos trancado mudanças realmente grandes para os jovens e as gerações futuras”, disse Hansen numa entrevista.

A pesquisa, aparecendo na terça-feira na revista de acesso aberto Atmospheric Chemistry and Physics, teve um caminho longo e controverso, tendo aparecido pela primeira vez como um “documento de discussão” na mesma revista, sujeito a revisão por pares on-line e ao vivo – uma nova mas cada vez mais influente forma de publicação científica. Hansen falou pela primeira vez à imprensa sobre a pesquisa no verão passado, antes deste processo estar concluído, levando a críticas por parte de alguns jornalistas e também de colegas cientistas de que ele poderia estar a saltar antes do tempo.

O que se seguiu foi um debate de alto nível, tanto por causa das reivindicações dramáticas como da formidável reputação de Hansen. E os seus numerosos co-autores, incluindo especialistas de gelo da Gronelândia e da Antártida e um líder do Painel Intergovernamental das Nações Unidas para a Mudança do Clima, não eram nada a desprezar.

Após downloads recordes do estudo e um intenso processo de revisão pública, uma versão revista do artigo foi agora aceite, de acordo com Hansen e Barbara Ferreira, gerente de mídia e comunicações para a União Geofísica Europeia [European Geophysical Union], a qual publica a Atmospheric Chemistry and Physics. De facto, o artigo está agora livremente disponível para leitura no site da Atmospheric Chemistry and Physics.

O artigo, de acordo com Ferreira, foi sujeito a “grandes revisões em termos de organização, título e conclusões.” Aquelas vieram em resposta a críticas que podem ser lidas publicamente no site da revista. O artigo também tem agora dois autores adicionais.

Mais notavelmente, talvez, o processo editorial levou à remoção do uso da frase “altamente perigoso”, no título do trabalho, para descrever o aquecimento do planeta em 2 graus Celsius acima dos níveis pré-industriais.

O título do artigo original era “Derretimento do gelo, elevação do nível do mar e supertempestades: evidência a partir de dados paleoclimáticos, modelagem climática, e observações modernas de que um aquecimento global de 2 °C é altamente perigoso.” O último título é “derreter o gelo, mar elevação do nível e supertempestades: evidência a partir de dados paleoclimáticos, modelagem climática, e as observações modernas que 2 ° C o aquecimento global poderia ser perigoso.”

Mas, mesmo assim, o cenário de catástrofe climática de James Hansen toma agora o seu lugar na literatura científica oficial, relativamente intacto. Logo, vamos ensaiar esse cenário, mais uma vez, para o registo.

Hansen e os seus colegas pensam que o derretimento de grande parte da Gronelândia e da Antártida pode não só acontecer bastante rápido – levando a tanto quanto vários metros de elevação do nível do mar no espaço de um século, dependendo da rapidez com que as taxas de derretimento duplicam -, como este derretimento irá ter consequências de mudanças climáticas dramáticas, além de simplesmente elevação dos níveis do mar.

Isso porque, postulam eles, a fusão irá causar uma “estratificação” dos oceanos polares. O que isto significa é que ela irá encurralar uma bolha de água doce fria do degelo no topo da superfície do oceano, com uma camada do oceano mais quente por baixo. Temos, realmente, visto uma possível pista para isto com a bolha anomalamente fria de água do oceano ao largo da costa sul da Gronelândia, a qual alguns atribuem ao derretimento da Gronelândia.

De fato, pouco antes da publicação do novo estudo, a National Oceanic and Atmospheric Administration [NOAA] lançou novos dados recentes sobre a temperatura do globo que, certamente, tem uma semelhança com aquilo de que Hansen está a falar. Pois não só esteve o globo com um calor recorde global durante os últimos três meses, como também mostrou manchas frias anómalas em regiões, as quais Hansen suspeita estarem a ser causadas ​​pelo derreter do gelo – abaixo da Gronelândia, e também ao largo da ponta da península Antártica.

Manchas de água doce fria ​pelo derreter do gelo abaixo da Gronelândia

Estratificação, a ideia-chave no novo estudo, significa que a água quente do mar chegaria potencialmente à base das camadas de gelo que assentam abaixo do nível do mar, derretendo-as a partir de baixo (e causando mais derretimento de gelo e, portanto, estratificação). Significa também, no artigo de Hansen, um abrandamento ou mesmo uma eventual paralisação da circulação de reversão no oceano Atlântico, devido a muito refrescar no Atlântico Norte ao largo e em torno da Gronelândia, e também a um enfraquecimento da outra circulação de reversão no Oceano Antártico.

Isto, por sua vez, causa arrefecimento na região do Atlântico Norte, para além de o aquecimento global criar uma região equatorial mais quente. Esse crescente diferencial de temperatura norte-sul, no estudo, impulsiona ciclones de latitude média, ou tempestades, mais intensos. O estudo sugere que tais tempestades podem disparar ondas oceânicas gigantescas, as quais podem até ser capazes de feitos como atirar pedregulhos em alguns locais, não muito diferente das rochas enormes vistas na ilha das Bahamas de Eleuthera, a qual visitei com Hansen e o seu co-autor, o geólogo Paul Hearty, em novembro.

Estas rochas desempenham um papel fundamental no novo estudo, tal como desempenharam no rascunho original do estudo. De facto, muito antes do artigo atual, Hearty havia documentado, em publicações revisadas por pares, que as rochas de Eleuthera parecem ter vindo do oceano e terem sido erguidas para cima de um cume costeiro. Isso parece ter acontecido durante um período de aquecimento passado, o Eemiano, cerca de 120.000 anos atrás, quando o planeta era apenas ligeiramente mais quente do que hoje, mas os mares eram muito mais elevados – mas a ideia é que algo assim poderia acontecer novamente.

Depósito de pedras em Eleuthera poderá estar relacionado com ondas oceânicas gigantescas

GREGORY TOWN, BAHAMAS – 21 DE NOVEMBRO: Os pedregulhos gigantes de Eleuthera que provocaram um grande debate entre os cientistas quanto à sua origem, tirado a 21 de Novembro de 2015, em Eleuthera, Bahamas. À esquerda está ‘The Bull’ (2000 toneladas) e à direita está ‘The Cow “(1000 toneladas). Medindo mais de 20 pés de altura, a teoria partilhada por Paul Hearty, um geólogo costeiro na Universidade da Carolina do Norte em Wilmington, é que as pedras enormes foram catapultadas para terra por uma série de tempestades intensas. Elas agora assentam delicadamente empoleiradas no cume costeiro em Eleuthera do Norte. (Fotos por Charles Ommanney / The Washington Post)

O artigo contém muitas ideias e pontos de partida, mas o ponto chave é a sua sugestão da possibilidade de uma maior elevação do nível do mar neste século do que o previsto pelo Painel Intergovernamental das Nações Unidas para as Alterações Climáticas.

“Os modelos que foram executados para o relatório do IPCC não incluíram o derretimento do gelo”, disse Hansen numa conferência de imprensa sobre o novo estudo, na segunda-feira. “E nós também concluímos que a maioria dos modelos, incluindo os nossos, têm uma mistura excessiva de pequena escala, e isso tende a limitar o efeito desta lente de água doce à superfície do oceano sobre degelo da Groenlândia e da Antártida.”

Michael Mann, um cientista climático da universidade Penn State familiarizado com o estudo original, comentou: “Tanto quanto posso dizer, as questões que me causaram preocupação originalmente ainda permanecem no manuscrito revisto. Nomeadamente, as quantidades projetadas de água do degelo parecem fisicamente grandes demais, e o componente oceânico do seu modelo não resolve sistemas atuais chave derivados do vento (por exemplo, a Corrente do Golfo) que ajuda a transportar calor em direção aos pólos. Isso torna as temperaturas do hemisfério norte no seu estudo muito sensíveis a mudanças na circulação de reversão meridional Atlântica”, o nome científico para a circulação oceânica no Atlântico que, o estudo sugere, pode parar.

New York Times:

O estudo identifica um mecanismo específico o qual os cientistas dizem que acreditam que poderia ajudar a causar uma mudança climática abrupta.

A sua ideia é que a fusão inicial das grandes camadas de gelo vai colocar uma tampa de água relativamente doce nas superfícies do oceano perto da Antártida e da Gronelândia. Isso, eles pensam, irá abrandar ou até mesmo desligar o sistema de correntes oceânicas que redistribui o calor em torno do planeta e permite que uma parte dele escape para o espaço.

O calor irá, então, acumular-se nas partes mais profundas do oceano, os cientistas pensam, acelerando o derretimento das partes das camadas de gelo que ficam abaixo do nível do mar. Além disso, uma diferença de temperatura mais ampla entre os trópicos e os pólos irá incentivar poderosas tempestades. O artigo cita evidências, em grande parte contestada, de que imensas tempestades aconteceram durante o período quente de há 120.000 anos atrás.

A ideia de uma paralisação na circulação dos oceanos devido ao aquecimento global foi considerada há mais do que uma década atrás, e foi rejeitada pela maioria dos cientistas como improvável. Isso não impediu uma versão distorcida da ideia de se tornar a premissa do filme catastrófico “O Dia Depois de Amanhã”, lançado em 2004.

O novo estudo pode reabrir esse debate, forçando os cientistas a reexaminarem a ideia com os modelos climáticos de computador mais sofisticados que estão disponíveis hoje.

Mesmo os cientistas cautelosos com as conclusões do novo estudo relembram que o Dr. Hansen tem uma longa história de estar à frente da curva na ciência do clima. Como o Dr. Mann disse, “Acho que nós ignoramos o James Hansen na nossa conta e risco.”

Nota: a parte do NYTimes fala da paralisação da AMOC como sendo improvável, mas não menciona o estudo de Stefan Rahmstorf de há um ano atrás, com Mann e Box.

Traduzido do original All Star Science Panel Drops Bombshell Climate Paper de Peter Sinclair, publicado no blogue Climate Denial Crock of the Week, a 22 de Março de 2016.

Standard