Mapa de seca e anomalia de precipitação por todo o globo.
Robertscribbler

Com as Temperaturas a Chegar aos 1,2ºC mais Quente do que o Pré-Industrial, a Seca Agora Abrange Todo o Globo

Jeff Goodell, um autor americano e editor na Rolling Stone, é conhecido por dizer o seguinte: “assim que começarmos deliberadamente a brincar com o clima, podemos inadvertidamente alterar os padrões de chuva (os modelos climáticos mostram que a Amazónia é particularmente vulnerável), causando o colapso de ecossistemas, seca, fome e mais.”

Estamos em processo de testar essa teoria. No caso da seca, que costumava ser apenas um assunto regional mas que agora se tornou global, Goodell parece ter acertado na mouche.

*****

De acordo com um relatório recente da Organização Meteorológica Mundial, a Terra está a caminho de atingir 1,2 graus Celsius mais quente do que as temperaturas pré-industriais durante 2016. Da subida do nível do mar, ao derretimento do gelo polar, a condições meteorológicas extremas, a um número crescente de pessoas deslocadas, este salto de temperatura está a criar impactos cada vez piores. Entre os mais vívidos destes está a extensão atual da seca global.

A Seca Global de Quatro Anos

Durante os anos de El Niño, as condições de seca tendem a expandir-se através de várias regiões à medida que as superfícies oceânicas aquecem. Entre 2015 e 2016, o mundo experienciou um poderoso El Niño. No entanto, apesar da influência observada deste aquecimento das águas superficiais do Pacífico Equatorial, uma seca global amplamente extensa remonta a 2013 e até antes.

Mapa de seca e anomalia de precipitação por todo o globo.

O Global Drought Monitor revela que condições secas têm sido predominantes durante grande parte do globo ao longo dos últimos quatro anos. Em algumas regiões, como na área do rio Colorado, a seca já se prolonga há mais de uma década. Fonte da imagem: SPEI Global Drought Monitor.

Na imagem acima, vemos défices de humidade do solo ao longo dos últimos 48 meses. O que encontramos é que grandes seções de praticamente todos os principais continentes estão a passar por, pelo menos, uma seca de quatro anos. As condições de seca foram previstas intensificarem-se, por modelos climáticos, nas latitudes médias à medida que o mundo aquecia. Parece que este é já o caso, mas a zona Equatorial e as latitudes mais altas também estão a experienciar seca generalizada. Se existe um padrão detetável nas condições atuais, é que poucas regiões têm evitado a seca. A seca é tão abrangente que é praticamente global na sua extensão.

Impactos Severos Generalizados

Estas condições de seca têm impactos notórios.

Só na Califórnia, mais de 102 milhões de árvores morreram devido ao aumento das temperaturas e uma seca que já dura desde 2010. Desses, 62 milhões já morreram só este ano. O relacionamento da seca com a mortalidade das árvores é bastante simples — quanto mais a seca durar, mais árvores perecerão à medida que as reservas de água nas raízes são usadas. A Califórnia perdeu, até agora, 2,5 por cento das suas árvores vivas devido ao que é agora o pior caso de mortalidade de árvores na história do estado.

Stress da vegetação às alterações climáticas

Não é apenas a Califórnia. Numerosas regiões por todo o mundo mostram plantas a passarem por condições ameaçadoras que colocam a sua vida em risco. No mapa acima, a saúde vegetativa é mostrada como estando sob stress, desde moderado [amarelo], a severo [rosa], em amplas regiões do mundo. Fonte da imagem: Global Drought Information System.

A seca californiana é apenas um aspecto de uma seca maior que abrange grande parte do Oeste norte-americano. Para a área do Rio Colorado, isto inclui uma seca de 16 anos que tem colocado o Lago Mead nos seus níveis mais baixos jamais registados. Com o racionamento iminente dos abastecimentos de água do rio, a menos que uma pausa milagrosa na seca surja de repente, os estados estão em sobressalto para descobrir como gerir uma escassez que se agrava. Enquanto isso, relatórios indicam que cidades como Phoenix irão exigir ação executiva por parte do presidente para garantir o abastecimento de água para milhões de residentes ao longo dos próximos anos, caso as condições não melhorem.

Mais a leste, a seca tem estado intermitente no centro e sul dos EUA. No sudeste, uma seca relâmpago recentemente ajudou a impulsionar uma onda fora-de-época de incêndios florestais sobre a região de Smoky Mountain. Ontem, em Gaitlinburg, Tennessee, chamas furiosas alimentados por ventos diante de uma frente fria obrigaram 14.000 pessoas a evacuar, danificaram ou destruíram 100 casas e ceifaram três vidas.

Incêndios resultam de seca severa Sibéria Julho 2016

Incêndios na Sibéria ativos a 23 de julho de 2016, ocorreram num contexto de seca severa. Fonte da imagem: LANCE MODIS

Nas latitudes setentrionais superiores, a principal consequência da seca também tem sido incêndios florestais. Os incêndios florestais são frequentemente atiçados por calor e seca em regiões densamente florestadas com níveis de humidade do solo reduzidos. O degelo do permafrost e os níveis reduzidos de cobertura de neve agravam a situação, reduzindo ainda mais o armazenamento de humidade em regiões secas e adicionando combustíveis tipo turfa para os incêndios.

Do Alasca ao Canadá até à Sibéria, este tem sido cada vez mais o caso. No ano passado, o Alasca experienciou uma das suas piores épocas de incêndios florestais de que há registo. Este ano, tanto o calor como a seca contribuíram para os intensos incêndios na região de Fort McMurray, no Canadá. E nos últimos anos, incêndios florestais alastrando-se por uma Sibéria tremendamente seca têm sido tão extremos que satélites em órbita, a um milhão de milhas de distância, puderam detetar as plumas de fumo.

Seca e incêndios florestais no ou perto do Ártico parecem justificadamente estranhos, mas quando se considera o facto de que muitos modelos climáticos haviam previsto que as latitudes setentrionais elevadas seriam uma das poucas grandes regiões a experienciar aumentos na precipitação, essa estranheza torna-se ameaçadora. Se a atual tendência de seca generalizada no Ártico for representativa, então o aquecimento apresenta um problema de seca de Equador a Pólo.

Um lago Baikal a minguar — que se alimenta de água que flui da chuva e neve da Sibéria Central — comporta um testamento sombrio de uma seca em expansão sobre a Rússia central e do norte. O lago Baikal, o mais profundo e antigo lago do mundo, está ameaçado pela secagem relacionada com as alterações climáticas das terras que drenam para si. Em 2015, os níveis de água no Baikal atingiram níveis recorde de baixa, e ao longo dos últimos anos, incêndios em redor do lago têm crescentemente colocado em perigo as comunidades locais e a vida selvagem.

Para o sul e oeste, a província de Gansu na China foi colocada sob um alerta de seca de nível 4 este verão passado. Aí, grandes faixas de culturas foram perdidas; 500 milhões de dólares em danos no acumulados. O governo chinês apressou ajuda a 6,2 milhões de moradores afetados, transportando água potável por camião para regiões que ficaram desprovidas de abastecimentos locais.

Seca na Índia em 2016

Lagos e leitos de rios secaram por toda a Índia neste ano, tendo a monção sido adiada pelo terceiro ano consecutivo. Fonte da imagem: India Water Portal

A Índia este ano experimentou uma escassez de água semelhante, mas muito mais generalizada. Em abril, 330 milhões de pessoas na Índia experienciaram pressões hídricas. Comboios de reabastecimento de água viajaram através do campo, entregando garrafas de líquido potável a moradores que tinham perdido o acesso. O retorno da monção da Índia forneceu algum alívio, mas a seca na Índia e nas terras altas do Tibete continua, com glaciares a encolher expostos ao ar quente.

África tem visto recentemente várias crises alimentares surgirem, à medida que incêndios vão assolando através das suas florestas equatoriais. Pressões para seres humanos, plantas e animais devido à secura, escassez de água e alimentos, e incêndios têm sido notoriamente severos. Mais recentemente neste ano, 36 milhões de pessoas em toda a África enfrentaram fome devido aos impactos relacionados com a seca. Mais recentemente, a África do Sul foi forçada a reduzir manadas de hipopótamos e búfalos devido à continuação da seca de vários anos lá.

Mais para norte, na Europa, também encontramos condições de seca generalizada e em expansão. Esta situação não é inesperada para o Sul da Europa, onde os modelos climáticos globais mostram incursões de climas desérticos do outro lado do Mediterrâneo. Mas como com o norte da Rússia e América do Norte, a Europa do Norte também está experienciar seca. Estas secas por toda a Europa ajudaram a desencadear graves incêndios em Portugal e Espanha no verão, numa altura em que se prevê a queda da produção de milho para a região.

Seca e incêndios na Amazónia do Peru

Em novembro, a seca propiciou incêndios que despontaram ao longo da zona fronteiriça da floresta amazónica no Perú. Fonte da imagem: LANCE MODIS

Finalmente, regressando às Américas, vemos condições de seca generalizada cobrindo grande parte do Brasil e da Colômbia, diminuindo ao longo da Cordilheira dos Andes, pelo Perú, Bolívia, Chile e Argentina. Em seções da cada vez mais desbastada e acossada pelo fogo floresta da Amazónia, e atualmente atingindo o nordeste do Brasil, as condições de seca duram agora desde há cinco anos. Lá, metade das cidades da região enfrentam racionamento de água e mais de 20 milhões de pessoas estão agora a ser confrontadas com stress hídrico. De setembro a novembro de 2015, mais de 40.000 hectares de floresta amazónica devastada pela seca arderam no Peru. Enquanto isso, a Bolívia viu o seu segundo maior lago secar e glaciares críticos para o abastecimento de água derreter, levando centenas de milhares de pessoas a ficar numa situação de racionamento de água.

Impactos na Comida

A seca e condições meteorológicas extremas em curso criaram impactos locais para o abastecimento de alimentos em várias regiões. No entanto, estes impactos ainda não afetaram seriamente os mercados globais de alimentos. A seca no Brasil e na Índia, por exemplo, tem impactado significativamente a produção de açúcar, o que por sua vez está causar um aumento dos preços globais dos alimentos. A produção de cereais foi um pouco menor, o que também está a causar preços mais elevados, embora não os grandes saltos que vemos no açúcar. Mas o Índice da Organização para a Alimentação e Agricultura (FAO) para outubro de 2016 (173 aproximadamente), sendo 9 por cento superior ao valor do ano passado para esta época do ano, ainda está bastante longe do valor 229 de pico que ocorreu em 2011, e que contribuiu para tanta agitação em todo o globo.

Subida de preços dos alimentos em 2016

O aumento dos preços dos alimentos durante 2016, face a preços relativamente baixos de energia e desafios significativos relacionados com o clima para os agricultores, é causa para preocupação. Fonte da imagem: FAO

Dito isto, com preços da energia a cair para valores comparativamente baixos, preços de alimentos relativamente altos (e crescentes) são causas para preocupação. Tradicionalmente, a queda dos preços da energia também reduzem os preços dos alimentos, pois os custos de produção são menores, mas parece que estes ganhos pelos agricultores estão a ser compensados ​​por vários impactos ambientais e climáticos. Além disso, embora muito difundida, a seca parece ter até agora evitado grandes regiões produtoras de cereais, como o centro dos EUA, e o centro e leste da Ásia. Assim, o quadro global de alimentos, se não inteiramente rosado, não está tão mau quanto poderia ser.

Condições em Contexto — Aumento da evaporação, Derretimento dos Glaciares, Menos Cobertura de Neve, Zonas Climáticas em Deslocação

Com o mundo agora provavelmente a atingir 1,5ºC acima das temperaturas pré-industriais ao longo dos próximos 15 a 20 anos, as condições gerais de seca provavelmente agravar-se-ão. As maiores taxas de evaporação são uma característica primária do aquecimento, o que significa que mais chuva tem de cair só para acompanhar o ritmo. Além disso, a perda do gelo glaciar em várias cadeias montanhosas e a perda de cobertura de neve em ambientes Árticos e próximos do Ártico, agora mais secos, irão reduzir ainda mais os níveis dos rios e a humidade do solo. O aumento da prevalência de eventos extremos de precipitação em comparação com eventos de chuva estáveis irá colocar ainda mais pressão sobre a vegetação que ajuda a capturar a humidade do solo. Finalmente, as alterações à circulação atmosférica devido à amplificação polar irão combinar-se com um movimento em direção aos pólos das zonas climáticas, levando a uma confusão geral das estações tradicionais de cultivo. Como resultado, tudo que depende de abastecimentos de água constantes e padrões climáticos previsíveis irá enfrentar desafios à medida que o mundo se dirige para um estado de mudança climática mais evidente.


Se ainda não o fizeram, podem subscrever aos novos conteúdos aqui!

Traduzido do original
With Temperatures Hitting 1.2 C Hotter than Pre-Industrial, Drought Now Spans the Globe
, publicado por Robertscribbler em http://robertscribbler.com/ a 30 de novembro de 2016.

Estes conteúdos são traduzidos e/ou legendados por voluntários motivados pelo desejo de facilitar o conhecimento a todos e assim melhorar as nossas vidas. Qualquer pessoa pode fazer o mesmo.
Para iniciar ou sugerir uma tradução, clique aqui.
Anúncios
Standard
Calor e seca extremos causam incêndios em Novembro nos EUA
Robertscribbler

Seca e Mudança Climática Originam Incêndios Enormes em Pleno Novembro

É Novembro. Um mês em que os Estados Unidos deviam estar a arrefecer em direção a condições típicas de Inverno. Mas para a região montanhosa ao longo da área de quatro estados que faz fronteira com Kentucky, Carolina do Norte, Geórgia e Tennessee, o clima está tudo menos típico de Outono. Lá, enormes incêndios florestais estão agora em ira, expulsando plumas maciças de fumo sufocante para o ar anormalmente quente sobre terras que foram secas pelas alterações climáticas relacionadas com o calor.

Incêndios Maciços Atingem Terras Secas
Calor e seca extremos causam incêndios em Novembro nos EUA

Incêndios muito grandes que queimam toda a região da Smokey Mountain a 7 de Novembro. Fonte da imagem: LANCE MODIS). Em pleno Novembro, em dia de eleições, incêndios enormes ardiam nos Estados Unidos, um país cujos candidatos presidenciais não incluíam a Mudança Climática nos seus debates.

Na imagem de satélite acima, tirada pela NASA a 7 de Novembro de 2016, vemos vários fogos com frentes que variam entre 1 a 5 milhas de largura, em erupção sobre a região de Smokey Mountain da Carolina do Norte, Tennessee, Geórgia e Kentucky. Alguns incêndios parecem ter-se escarranchado na fronteira com a Virgínia. Grandes incêndios também queimam mais a leste entre Ashville e Charlotte. Juntos, estes incêndios estão a emitir nuvens de fumo que agora se estendem 350 milhas para cima — flutuam para norte e oeste, pelos ventos quentes do sul.

Avisos de incêndio e anúncios públicos incitando as pessoas a não fazerem fogueiras foram feitos a 1 de Novembro. O Centro National Interagências para os Incêndios (NIFC) forneceu informação inicial sobre vários incêndios que se iniciavam por toda esta região de quatro estados, a 4 de Novembro. As imagens do satélite MODIS para o dia 4 mostram que estes incêndios eram então muito menores — pouco visíveis na imagem. Relatórios de imagem e no terreno agora indicam que os incêndios se tornaram consideravelmente maiores e mais ameaçadores no fim de semana.

//platform.twitter.com/widgets.js
(A vista sobre a Carolina do Norte ocidental ontem à tarde quando os incêndios florestais queimavam através da região montanhosa.)

Na segunda-feira, agências de notícias locais estavam a relatar o surto de 170 incêndios só na Geórgia, com 4.000 acres já queimados na parte norte do estado. No Tennessee, 96 incêndios ativos atualmente foram relatados como tendo consumido 9.000 acres. Campbell, na parte oriental do estado, foi particularmente atingida com mais de 3.400 acres queimados até esta tarde e a qualidade do ar em declínio desencadeando Alertas de Código Vermelho. No Kentucky, 11.000 acres tinham sido consumidos pelo incêndio até segunda-feira. A Carolina do Norte, por sua vez, chamou 350 bombeiros para combater várias chamas grandes e crescentes.

Seca Abrupta, Aquecimento Extremo

Ao longo de Setembro e Outubro, os dois terços orientais dos EUA tem estado extremamente secos e extremamente quentes. As temperaturas para o mês de Outubro variaram entre 3 a 5 graus Celsius acima da média na maioria dos 48 estados mais abaixo.

Mapa da seca nos Estados Unidos

Calor extremo sobre o sudeste dos Estados Unidos ajudou a promover condições de seca repentina juntamente com incêndios muito grandes agora a arderem na Carolina do Norte, Tennessee e Kentucky. Fonte da imagem: O Monitorização da Seca dos EUA.

Juntamente com o calor veio um rápido aparecimento de condições de seca. Em particular o Mississippi, Alabama, Geórgia, Carolina do Sul, Carolina do Norte, Tennessee e Kentucky experimentaram condições cada vez mais extremas. No Kentucky, por exemplo, a semana que terminou a 1 de Novembro viu a cobertura do estado pela seca mais do que triplicar (de 24 por cento para 81 por cento da área terrestre do estado).

Seca repentina é uma nova forma de mudança climática provocada pelo aumento das taxas de evaporação devido ao aquecimento das terras e do ar. O calor extra tira a humidade do solo e da vegetação mais rapidamente e pode desencadear o surgimento de condições extremas em escalas de tempo curtas. A seca repentina em curso já andava a causar problemas no Sudeste antes da recente onda de incêndios florestais. Contudo, dado o calor intenso e fora de época e a velocidade com que as terras secaram, o presente surto de incêndio representa um perigo grave e incomum para esta altura do ano.

Traduzido do original Drought, Climate Change Spur Severe Election Day Wildfire Outbreak Across Four-State Area, publicado por Robertscribbler em http://robertscribbler.com/ a 8 de Novembro de 2016.

Estes conteúdos são traduzidos e/ou legendados por voluntários motivados pelo desejo de facilitar o conhecimento a todos e assim melhorar as nossas vidas. Qualquer pessoa pode fazer o mesmo.
Para iniciar ou sugerir uma tradução, clique aqui.
Standard
Reservatório de CO2 da Amazónia emite dióxido de carbono (CO2) em vez de absorver
Robertscribbler

Reservatórios de Carbono em Crise – Amazónia Emite CO2

Reservatórios de Carbono em Crise — Parece que a Maior Floresta Tropical do Mundo está a Começar a Sangrar Gases de Efeito Estufa

Já em 2005, e novamente em 2010, a vasta floresta amazónica, que tem sido adequadamente descrita como os pulmões do mundo, perdeu brevemente a sua capacidade de absorver dióxido de carbono atmosférico. As suas árvores stressadas pela seca não estavam a crescer e respirar o suficiente para, no saldo final, remover carbono do ar. Incêndios rugiram através da floresta, transformando árvores em gravetos e libertando o carbono armazenado na sua madeira de volta para o ar.

Estes episódios foram as primeiras vezes que a Amazónia foi documentada como tendo perdido a sua capacidade de absorver carbono atmosférico numa base líquida. A floresta tropical tinha-se tornado no que é chamado de neutra em carbono. Por outras palavras, lançou tanto carbono quanto absorveu. Os cientistas viram isso como uma espécie de coisa séria.

Este Verão, um desligar semelhante parece estar a acontecer de novo na Amazónia. Uma seca severa está novamente a stressar as árvores enquanto ventila os incêndios numa maior intensidade do que em 2005 e 2010. Medidas de satélite anteriores parecem indicar que algo ainda pior pode estar a acontecer – a floresta tropical e as terras que habita estão agora a ser tão duramente atingidas por uma combinação de seca e fogo que a floresta está a começar a sangrar carbono de volta. Este repositório gigantesco e antigo de carbono atmosférico parece ter, pelo menos ao longo dos últimos dois meses, se transformado numa fonte de carbono.

Reservatório de CO2 da Amazónia emite dióxido de carbono (CO2) em vez de absorver

(Níveis elevados de dióxido de carbono, na faixa de 410 a 412 partes por milhão, e de metano na atmosfera sobre a floresta tropical da amazónia durante Julho e Agosto de 2016 é um indicador preliminar de que a grande floresta pode estar, durante esse período, a comportar-se como uma fonte de carbono. Fonte da imagem: Observatório Copernicus).

Reservatórios de Carbono Não Conseguem Acompanhar

Embora a história da mudança climática forçada pelos humanos comece com a queima de combustíveis fósseis, a qual expele o dióxido de carbono que retêm o calor na atmosfera, infelizmente, não termina aí. À medida que essa queima provoca o aquecimento da Terra, coloca pressão sobre os lugares que, em circunstâncias normais, removem o carbono da atmosfera. Os oceanos, florestas boreais, e as grandes florestas equatoriais, absorventes de carbono, todos sentem a picada daquele calor. Este aquecimento faz com que os oceanos sejam menos capazes de segurar o carbono nas suas águas próximas da superfície e desencadeia secas e incêndios que podem reduzir a capacidade de uma floresta de absorver esse carbono.

No contexto do ciclo global de entrada e remoção de carbono da atmosfera da Terra, os oceanos e as florestas grandes e saudáveis ​​servem para absorver os gases de efeito estufa. Chamamos-lhes reservatórios de carbono, e ao longo dos últimos 10.000 anos da nossa época atual, o Holoceno, eles ajudaram a manter esses gases e, por extensão, as temperaturas da Terra, relativamente estáveis.

Porque é que os reservatórios de carbono são importantes

(Sem a capacidade das florestas, solos e oceanos de absorverem carbono — de atuarem como reservatórios de carbono — o CO2 atmosférico global já teria subido bem acima das 500 partes por milhão em 2009 devido à queima de combustíveis fósseis. Estes dissipadores de carbono são um fator útil atenuante do insulto das emissões de carbono humanas, mas se ficarem muito stressados, podem, em vez disso, tornar-se em fontes de carbono. Fonte da imagem: IPCC / CEF).

Contudo, já há muito tempo agora que as emissões de combustíveis fósseis pelos humanos superaram em muito a capacidade dos reservatórios de carbono do mundo de removerem o excesso de carbono e manterem os níveis de gases de efeito estufa estáveis. Apesar de estes reservatórios terem captado mais da metade do grande volume de carbono emitido pela queima de combustíveis fósseis, a porção total de CO2 que retêm o calor aumentou de 280 ppm para mais de 400 ppm. Os oceanos acidificaram à medida que aguentavam a nova sobrecarga de carbono. E as florestas absorveram este carbono mesmo enquanto lutavam contra a expansão da desflorestação. Como resultado de todo o excesso de carbono atualmente na atmosfera, a Terra aqueceu mais de 1 grau Celsius acima dos níveis de 1880. E combinado com o já forte stress imposto pela agricultura de corte raso e de queimada, o calor adicional é uma grande pressão sobre um recurso global essencial.

O Aquecimento Global Leva ao Desligar dos Dissipadores de Carbono, ou pior, Torna-os em Fontes

Neste contexto trágico de calor, seca, acidificação dos oceanos e desmatamento, parece que o período de graça que os dissipadores de carbono da Terra nos deram para nos organizarmos e agirmos em conjunto sobre o aquecimento global está a chegar ao fim. O aquecimento da Terra de forma tão significativa como temos feito está a causar que estes dissipadores comecem a quebrar — a serem capazes de remover menos carbono, como foi o caso com a floresta amazónica em 2005 e 2010. Nestes pontos no tempo, o reservatório era neutro em carbono. Já não nos forneciam o serviço útil de retirar o carbono da atmosfera e armazená-lo nas árvores ou no solo. Mas, mais preocupante, em 2016, parece que a Amazónia também pode estar a começar a contribuir com carbono de volta para a atmosfera.

Níveis elevados de metano na Amazónia

(Leituras de metano de superfície sobre a Amazónia elevadas em excesso com 2.000 partes por bilhão é uma assinatura de seca e incêndio. É também um sinal de que a floresta tropical durante este período estava a emitir mais carbono do que estava a receber. Fonte da imagem: O Observatório Copernicus).

Após cada um destes breves períodos de insucesso em baixar o carbono em 2005 e 2010, o reservatório de carbono da Amazónia ligou-se novamente e começou a funcionar por um tempo. Mas em 2015 e 2016, temperaturas globais recorde tinham novamente provocado uma seca terrível na região amazónica. De acordo com oficiais da NASA, a nova seca foi a pior desde pelo menos 2002 e estava a desencadear condições de incêndio piores do que em 2005 e 2010 – as últimas vezes em que o dissipador de carbono da Amazónia se desligou. Em Julho de 2016, o Guardian reportou:

Condições de seca severa no início da estação seca, criaram a base para o risco de incêndio extremo em 2016 por todo o sul da Amazónia”, disse Morton num comunicado. Os estados brasileiros do Amazonas, Mato Grosso e Pará estão declaradamente em maior risco.

Pela previsão de incêndios na Amazónia da NASA, o risco de incêndio florestal para Julho a Outubro excede agora o risco ede 2005 e 2010 – a última vez que a região experimentou uma grave seca e os incêndios assolaram grandes áreas da floresta tropical. Até agora, a Amazónia tem visto mais incêndios em Junho de 2016 do que em anos anteriores, o que os cientistas da NASA dizem foi outro indicador de uma temporada de incêndios potencialmente difícil.”

Incêndios florestais no brasil e Amazónia a 5 de Agosto de 2016

(Incêndios florestais extensos sobre sul da Amazónia e Brasil coincidem com picos atmosféricos aparentes de metano e CO2. Um indicador de que o reservatório de carbono da Amazónia está a experienciar um novo período de fracasso. Fonte da imagem: LANCE MODIS).

Ao mesmo tempo que a seca e os incêndios relacionados começavam a rasgar através da Amazónia, os monitores de carbono atmosférico como o Observatório Copérnico estavam a apanhar o sinal de um pico de carbono sob a Amazónia com níveis de metano superiores a 2.000 ppb (o que muitas vezes é uma assinatura de seca e incêndios florestais) e níveis de dióxido de carbono na ordem dos 410 a 412 ppm. Era um pico comparável àqueles das regiões industriais do mundo como o leste da China, os EUA e a Europa.

Em contexto, esses picos de carbono da Amazónia estão a ocorrer num tempo de aumentos recorde de CO2 atmosférico. Durante os primeiros sete meses de 2016, o aumento médio de CO2 em relação a 2015 foi de 3,52 ppm. A taxa global de aumento de CO2 de 2015 na ordem dos 3,1 ppm de um ano para o outro foi o aumento anual mais rápido já registado pela NOAA e o Observatório Mauna Loa. Até agora este ano, a taxa de ganho atmosférico deste gás chave do efeito de estufa continua a aumentar — isto no contexto de picos de carbono sobre uma região que devia estar a retirar CO2, não a emiti-lo.

Traduzido do original Carbon Sinks in Crisis — It Looks Like the World’s Largest Rainforest is Starting to Bleed Greenhouse Gasses, publicado por Robertscribbler em http://robertscribbler.com/ a 5 de Agosto de 2016.

Standard
Níveis de metano elevados após sismo no Ártico a 15 de Julho de 2016
Sam Carana

Níveis de Metano Elevados Seguem-se a Sismo no Oceano Ártico

Nos 12 meses anteriores a 14 de Julho de 2016, 48 sismos com uma magnitude de 4 ou superior na escala de Richter atingiram a área do mapa da imagem abaixo, na maior parte a uma profundidade de 10 km (6.214 milhas).

48 Sismos no Ártico em Julho de 2016

48 terramotos atingiram a área do mapa durante os 12 meses anteriores a 14 de Julho de 2016. Criado por Sam Carana para Arctic-news.blogspot.com com imagens de earthquake.usgs.gov

À medida que as temperaturas continuam a aumentar e o derretimento dos glaciares continua a tirar peso da superfície da Gronelândia, um reajuste isostático pode, cada vez mais, desencadear terremotos em torno da Gronelândia, e em particular sobre a falha geológica que atravessa o Oceano Ártico.

Dois terremotos atingiram recentemente o Oceano Ártico. Um terremoto atingiu com uma magnitude de 4,5 graus na escala Richter a 9 de Julho de 2016. O outro terremoto atingiu com uma magnitude de 4,7 graus na escala Richter a 12 de Julho de 2016, às 00:15:24 UTC, com epicentro a 81.626°N 2.315°W e a uma profundidade de 10,0 km (6.214 milhas), como ilustrado pela imagem abaixo.

Sismo no Ártico a 12 de Julho

A 12 de Julho de 2016, um terramoto atingiu o Oceano Ártico com a magnitude de 4,7 na escala de Richter, com epicentro a 81.626”N 2.315”W e a 10km de profundidade.

Seguindo-se ao terremoto mais recente, elevados níveis de metano apareceram na atmosfera a 15 de Julho de 2016, sobre essa mesma área que o terremoto atingiu, como ilustra a imagem abaixo.

Níveis de metano elevados após sismo no Ártico a 15 de Julho de 2016

Sobre a área atingida por um terramoto a 12 de Julho de 2016, elevados níveis de metano apareceram a uma altitude de 4,116m a 15 de Julho de 2016. A imagem pequena mostra a mesma área a 6.041m de altitude a 15 de Julho. Criado por Sam Carana com imagens da NOAA. Branco= sem dados; cinzento= falha de leitura.

A imagem acima mostra que os níveis de metano foram tão elevados quanto 2505 ppb a uma altitude de 4.116 m ou 13,504 pés na manhã de 15 de Julho de 2016. A uma maior altitude (de 6.041 m ou 19,820 pés), níveis de metano tão altos quanto 2.598 ppb foram registrados naquela manhã e a área de cor magenta a leste do ponto nordeste da Gronelândia (enquadramento em foco) parece indicar a mesma coisa nas imagens entre estas altitudes. Tudo isso indica que o terremoto causou desestabilização de hidratos de metano contidos nos sedimentos naquela área.

Libertação de metano a leste da Gronelândia após sismo

Níveis de metano a uma pressão atmosférica de 840mb variavam entre 1555 e 2058 ppb. Criado por Sam Carana com imagens da NOOA.

A imagem acima, de outro satélite, confirma fortes libertações de metano a leste da Gronelândia, na tarde de 14 de Julho de 2016, enquanto a imagem abaixo mostra níveis elevados de metano a 16 de Julho de 2016, ao longo da falha geológica que atravessa o Oceano Ártico.

Metano com níveis elevados no Ártico após sismo

A imagem abaixo mostra glaciares na Gronelândia e o gelo do mar perto da Gronelândia e Svalbard a 15 de Julho de 2016. Note-se que as nuvens em parte obscurecem a extensão do declínio do gelo do mar.

Declínio do gelo marinho na Gronelândia e Svalbard

Gelo marinho fraturado e lamacento no Ártico

A imagem acima mostra o gelo do mar a 12 de Julho de 2016. Há uma grande área com muito pouco gelo do mar perto do Pólo Norte (à esquerda) e há pouco ou nenhum gelo do mar em torno de Franz Josef Land (à direita). Em geral, o gelo do mar parece lamacento e fraturado em pequenos pedaços finos. Tudo isso é uma indicação de quão quente a água está por baixo do gelo do mar.

Temperaturas muito elevadas no Ártico a 16 de Julho de 2016Além dos choques e mudanças de pressão causados por terremotos, a desestabilização de hidratos de metano pode ser desencadeada pelo calor do oceano alcançando o fundo do mar do Oceano Ártico. Uma vez que o metano chega à atmosfera, pode muito rapidamente elevar as temperaturas locais, agravando ainda mais a situação.

As temperaturas já estão muito elevadas em todo o Ártico, como ilustrado pela imagem abaixo, mostrando que a 16 de Julho de 2016 estiveram 1,6°C sobre o Pólo Norte (círculo verde de cima), enquanto estiveram 32,7°C num local perto de onde o rio Mackenzie desagua no Oceano Ártico (círculo verde de baixo).

O gelo do mar no Ártico não parece nada bem, como também ilustrado pelo cálculo presente pelo Laboratório de Pesquisa Naval em abaixo.

Declínio do glo do mar no Ártico em Julho de 2016

A espessura do gelo do mar caiu drasticamente ao longo dos anos, especialmente o gelo que tinha mais do que 2,5 m de espessura. A imagem abaixo compara a espessura gelo do mar do Ártico (em m) a 15 de Julho, para os anos a partir de 2012 (painel à esquerda) a 2015 (painel direito), utilizando imagens do Laboratório de Pesquisa Naval.

Comparação da espessura do gelo do mar no Ártico entre os anos de 2012 e 2015

[ Clique na imagem para ampliá-la ]
A imagem abaixo mostra anomalias da temperatura de superfície do mar em relação a 1961-1990 a 24 de Julho de 2016.

Temperaturas anormais muito elevadas no Ártico em Julho de 2016

As temperaturas da superfície do mar ao largo da costa da América são altas e muito deste calor do oceano será carregado pela Corrente do Golfo em direção ao Oceano Ártico ao longo dos próximos meses.

Temperaturas altas da superficie do mar na corrente do golfo até ao Ártico

A 24 de Julho de 2016, a temperatura da superfície do mar perto da Flórida estava tão alta quanto 33,2°C, uma anomalia de 3,7°C em relação à média de 1981-2011 (círculo verde inferior), enquanto que a temperatura da superfície do mar perto de Svalbard estava tão elevada quanto 17,3°C, uma anomalia de 12,6°Cem relação a 1981-2011 (círculo verde em cima).

Uma tampa de água doce fria (ou seja, baixa salinidade) fica em cima do oceano e esta tampa é alimentada por precipitação (chuva, granizo, neve, etc.), o derretimento do gelo do mar (e icebergs) e água que escorre da terra (de rios e derretimento de glaciares em terra). Esta tampa reduz a transferência de calor do oceano para a atmosfera e, assim, contribui para um Atlântico Norte mais quente onde enormes quantidades de calor são agora transportadas por baixo desta tampa em direção ao Oceano Ártico. O perigo é que mais calor do oceano a chegar ao Oceano Ártico vai desestabilizar clatratos no fundo do mar e resultar em enormes erupções de metano, como discutido em posts anteriores, como este.

À medida que as temperaturas continuam a aumentar, a neve e ogelo no Ártico vão diminuir. Isso poderia resultar em cerca de 1,6°C de aquecimento devido a mudanças de albedo (ou seja, devido ao declínio tanto do gelo do mar do Ártico como da cobertura de neve e gelo em terra). Além disso, cerca de 1,1°C de aquecimento poderiam resultar da libertação de clatratos de metano do fundo do mar dos oceanos do mundo. Como discutido num post anterior, isso poderia suceder como parte de um aumento em relação aos níveis pré-industriais de até 10°C, por volta do ano de 2026.

Incêndios florestais no Alasca Canadá, um feedback de auto-reforço do aquecimento global

Incêndios na Sibéria a 19 de julho de 2016 constituem um feedback no aquecimento globalÀ medida que as temperaturas sobem, o impacto será sentido em primeiro lugar e mais fortemente no Ártico, onde o aquecimento global está a acelerar devido a inúmeros feedbacks que podem atuar como ciclos de auto-reforço.

Já neste momento, isto está a desencadear incêndios florestais em todo o Ártico.

A imagem acima mostra incêndios (indicados por pontos vermelhos) no Alasca e no norte do Canadá, a 15 de Julho de 2016.

A imagem à direita mostra fumo resultante de incêndios florestais na Sibéria. A imagem abaixo mostra que, a 18 de Julho de 2016, os níveis de monóxido de carbono (CO) sobre a Sibéria estavam tão elevados quanto 32318 ppb, e numa área com níveis de dióxido de carbono (CO2) tão baixos quanto 345 ppm, o CO2 atingiu níveis tão elevados quanto 650 ppm no mesmo dia.

Níveis de dióxido de carbono (CO2) e monóxido de carbono (CO) na Sibéria, resultante de incêndios florestais em Julho de 2016

A imagem abaixo mostra a extensão de fumo de incêndios florestais na Sibéria a 23 de Julho de 2016.

Fumo resultante dos incêndios na Sibéria a 23 de Julho de 2016

A imagem abaixo mostra níveis elevados de metano sobre a Sibéria a 19 de Julho de 2016.

Niveis elevados de metano na Sibéria a 19 de Julho de 2016

A imagem abaixo, a partir do satélite MetOp, mostra níveis elevados de metano sobre a Sibéria a 21 de Julho de 2016.

Niveis elevados de metano na Sibéria a 21 de Julho de 2016

Abaixo estão outras imagens que descrevem os níveis de metano médios globais, em relação a 1980-2016 (à esquerda) e 2012-2016 (à direita).

Níveis Médios Globais Metano 1980 2016Níveis de metano entre 2012 e 2016

A imagem abaixo mostra os níveis de metano em Barrow, Alasca.

Medição dos níveis de metano no Alasca ao longo dos anos, mostra pico em 2016

A imagem abaixo mostra que, enquanto que os níveis de metano podem parecer terem-se mantido estáveis ao longo do ano passado quando fazendo as medições ao nível do solo, em altitudes mais elevadas eles subiram fortemente.

Variação dos níveis de metano com a altitude comparando os anos 2015 e 2016

A tabela de conversão abaixo mostra os equivalentes de altitude em pés, m e mb.
57016 pés 44690 pés 36850 pés 30570 pés 25544 pés 19820 pés 14385 pés 8368 pés 1916 pés
17378 m 13621 m 11232 m 9318 m 7786 m 6041 m 4384 m 2551 m 584 m
74 mb 147 mb 218 mb 293 mb 367 mb 469 mb 586 mb 742 mb 945 mb

A situação é calamitosa e apela a uma acção abrangente e eficaz, conforme descrito no Plano Climático.

Traduzido do original High Methane Levels Follow Earthquake in Arctic Ocean de Sam Carana, publicado no blogue Arctic News, a 17 de Julho de 2016.

Standard
Incêndios Florestais na Sibéria e cobertor de fumo
Robertscribbler

Incêndios Florestais na Terra do Solo Congelado

Incêndios Florestais na Terra da Permafrost (Pergelissolo) – 1.000 Milhas de Cobertores de Fumo na Sibéria em Chamas

Mais um dia num mundo quente recorde. E em poucas horas, logo abaixo do Círculo Ártico na Sibéria, a temperatura está prevista atingir 33,2 C (ou cerca de 92 graus Fahrenheit). De acordo com a reanálise de dados do clima, são cerca de 15 a 20 C acima da média para esta época do ano, sobre uma terra cheia de florestas boreais e cobertura de solo adaptados ao tempo frio, os quais, logo abaixo dos primeiros pés de liteira, é suposto estarem continuamente congelados.

Temperatura elevada e incêndios na Sibéria

(Temperaturas de 32 C [92F] correm para dentro dos 3,7 graus de latitude a sul do Círculo Ártico [66 N]. Estas são leituras no intervalo de 15 a 20 graus Celsius acima do normal e são provavelmente intervalos recorde para a área. Nas proximidades, enormes incêndios florestais Siberianos ardem neste momento. Fonte da imagem: Earth Nullschool).

Ao longo de toda a fronteira sul e oeste desta região de calor extremo, há incêndios muito grandes agora. Iniciando-se perto e a leste do lago Baikal durante o início de Abril, Maio e Junho, os incêndios têm vindo desde então rumo a norte. Agora estendem-se visivelmente ao longo de um prolongamento de aproximadamente 1.000 milhas da Sibéria Central, chegando tão a norte quanto ao próprio Círculo Ártico.

Tão recentemente quanto 25 de Junho, as autoridades russas indicaram que cerca de 390 milhas quadradas arderam ao longo da borda sul desta zona, apenas em Buryatia. Para outras regiões, a dimensão é aparentemente incontável. Um número não declarado de bombeiros estão agora empenhados com estas chamas e foram presentemente assistidos por umas 150 pessoas adicionais do exército russo. A agência de notícias Interfax também relata que uns 11.000 do pessoal do exército russo estão atualmente em estado de espera para combater os incêndios maciços, em caso de necessidade.

Incêndios Florestais na Sibéria e cobertor de fumo

(Imagem do satélite LANCE-MODIS da NASA a 30 de Junho de 2016 mostra enormes plumas de fumo erguendo-se de incêndios intermitentes aparentemente em chamas ao longo de uma faixa de aproximadamente 1.000 milhas a partir da Sibéria Central. Para referência, o bordo direito da imagem são aproximadamente 1.200 milhas.)

A Sibéria de hoje é um vasta terra em descongelamento e exércitos de bombeiros são agora aparentemente necessários para parar ou conter as chamas. Já intercalada com camadas profundas de turfa, a permafrost em derretimento adiciona um combustível adicional semelhante à turfa a esta zona de permafrost. Quando a turfa e a permafrost descongelada se inflamam, gera um fumo mais pesado do que um incêndio florestal típico. Isso pode resultar em qualidade do ar muito pobre e incidentes de doença relacionados. Durante 2015, um fumo asfixiante relacionado a incêndios de turfa forçou uma resposta de emergência dos bombeiros russos. A espessa camada de fumo que abrange actualmente a Sibéria (visível na imagem do satélite LANCE MODIS a 30 de Junho, em cima) agora cobre na sua maioria regiões desabitadas. Mas a cobertura e densidade do fumo não é menos impressionante.

Os incêndios de turfa e permafrost descongelada têm o potencial para arder durante longos períodos, gerando pontos quentes que podem persistir durante o Inverno – emergindo como novas fontes de ignição a cada Verão que passa, até porque o aquecimento no Ártico se intensifica. Durante os últimos anos, os incêndios florestais no Ártico Siberiano têm sido bastante extensivos. De acordo com a análise por satélite da Greenpeace, os incêndios de 2015 cobriram no todo 8,5 milhões de acres (ou cerca de 13.300 milhas quadradas). Estes relatórios entram em conflito com os números oficiais da Rússia. Números que a Greenpeace indica caem bem abaixo da área total real queimada.

(Incêndios florestais surgem ao norte e oeste do lago Baikal a 27 de Junho, imagem a partir imagens do satélite japonês Himawari 8.)

A permafrost a descongelar sob as temperaturas siberianas a aquecerem não apenas gera combustível para estes incêndios, torna-se uma fonte adicional de emissões de gases de efeito estufa. E à medida que a área de terreno que os incêndios queimam no Ártico se expande juntamente com o pulso de calor de aquecimento forçado pelos humanos, este feedback amplificador ameaça adicionar a um problema já de si grave.

Traduzido do original Wildfires in the Land of Frozen Ground — 1,000 Mile Long Pall of Smoke Blankets Burning Siberia, publicado por Robertscribbler em http://robertscribbler.com/ a 1 de Julho de 2016.

Standard
Feedbacks climáticos como incêndios florestais impactam relação entre níveis de CO2 e emissões de CO2
Sam Carana

Feebacks Climáticos Começam a Entrar Mais em Cena

Secas e ondas de calor estão a colocar a vegetação sob uma pressão devastadora ao mesmo tempo que causam incêndios que resultam em desmatamento e perda de turfa em escala massiva, contribuindo para o recente aumento rápido nos níveis de dióxido de carbono.

Comparação dos níveis de CO2 com emissões de CO2 revela impacto de feedbacks climáticos

Vai levar uma década antes que estas elevadas emissões de dióxido de carbono recentes terão o seu impacto completo sobre o aquecimento. Além disso, enquanto o mundo faz progressos com os cortes necessários nas emissões de gases de efeito de estufa, isso irá também remover os aerossóis que têm, até agora, mascarado a ira completa do aquecimento global. Por implicação, sem ocorrer geoengenharia durante a próxima década, as temperaturas continuarão a subir, resultando em mais aumentos na abundância e intensidade das secas e incêndios florestais.

As temperaturas no Ártico estão a aumentar mais rápido do que em qualquer outro lugar. A imagem abaixo mostra que as águas do Ártico estão agora muito mais quentes do que em 2015. A 22 de Junho de 2016, a superfície do mar perto de Svalbard estava tão quente quanto 13,8°C ou 56,9°F (círculo verde), ou seja, 11,6°C ou 20.9°F mais quente que a média de 1981-2011.

temperaturas elevadas no mar no oceano Ártico

Os incêndios florestais podem libertar quantidades enormes de dióxido de carbono (CO2), monóxido de carbono (CO), metano e fuligem. A imagem em baixo mostra que a 23 de Junho de 2016, incêndios a norte do Lago Baikal causaram emissões tão elevadas quanto 22,953 ppb de CO e 549 ppm de CO2 na localização marcada com o círculo verde.

Incêndios florestais perto do Lago Baikal libertam enormes quantidades de CO2

O vídeo em baixo creado por Jim Reeve mostra uma animação com os níveis de monóxido de carbono em Maio de 2016.

Como quantidades crescentes de fuligem dos incêndios florestais assentam na cobertura de gelo e neve, a diminuição do albedo no Ártico irá acelerar. Além disso, ondas de calor estão a causar um aquecimento rápido dos rios que terminam no Oceano Ártico, acelerando ainda mais o seu aquecimento. E então, há um grande perigo de libertação de metano do fundo do mar do Oceano Ártico. Enquanto isso, o aumento das temperaturas também irá resultar em mais vapor de água na atmosfera, amplificando ainda mais o aquecimento.

À medida que mais energia permanece na biosfera, pode-se esperar que as tempestades aumentem de intensidade. A subida das temperaturas irá resultar em mais vapor de água na atmosfera (7% mais vapor de água por cada 1°C de aquecimento), amentando ainda mais o aquecimento e resultando em eventos de precipitação mais intensos, i.e. chuvas, inundações e relâmpagos.

Nuḿero de eventos diários de chuvas intensas bate recorde em 2015

Nuḿero de eventos diários de chuvas intensas bate recorde em 2015. De Lehmann et al.

Recentemente, a Virgínia Ocidental foi atingida por umas cheias devastadoras, matando pelo menos 26 pessoas e causando a evacuação de milhares de pessoas e danos enormes. As inundações também podem causar decomposição rápida da vegetação, resultando em grandes libertações de metano, como ilustrado na imagem em baixo que mostra uma forte presença de metano (cor magenta) a 39,025 pés ou 11.9 km ,a 26 de Junho (painel da esquerda), bem como aos 44,690 pés ou 13.6 km a 27 de Junho (painel da direita).

Libertação de metano resultante das inundações na Virgínia Ocidental revelada pelos níveis elevados de metano registados

Além do mais, plumas por cima das tempestades podem trazer vapor de água para a estratosfera, contribuindo para a formação de nuvens cirrus que prendem muito calor que de outro modo seria irradiado para o espaço. O número de eventos de relâmpagos pode ser esperado que aumente em cerca de 12% por cada 1°C de aumento da temperatura do ar global média. Entre 3 e 8 milhas de altitude, durante os meses de Verão, a actividade de relâmpagos aumenta tanto quanto 90% e o ozono em mais de 30%.

Em conclusão, os feedbacks (mecanismos de realimentação ou retroalimentação) ameaçam causar um aquecimento descontrolado, o que poderia fazer as temperaturas subirem mais de 10°C ou 18°F numa década.Neste momento, o derretimento dos mantos de gelo está a mudar a forma como a Terra oscila em torno do seu eixo, diz a NASA. Como Paul Beckwith discute no seu vídeo em baixo, as alterações também estão a ocorrer nas Correntes de Jato.

O perigo é que as alterações na oscilação do planeta irão desencadear terramotos massivos que irão desestabilizar os hidratos de metano e resultar em enormes quantidades de metano a entrarem abruptamente na atmosfera, como ilustrado na imagem em baixo.

Terra tornou-se Monopolo, com temperaturas elevadas no Ártico e baixas na Antártida

Perdemos o Ártico? Parece que a Terra já não tem dois Polos, mas tornou-se, em vez, num Monopolo, com apenas um Polo na Antártida. A 29 de Junho de 2016, as águas no Ártico (superfície do mar) estava tão quente quanto 15.8°C (60.5°F), ou 13°C (23.4°F) mais quente que a média de 1981-2011. Entretanto, as temperaturas de superfície na Antártida naquele dia eram tão baixas quanto -66.6°C (-87.8°F).

A situação é terrível e apela a uma acção abrangente e eficaz, conforme descrito no Plano Climático.

Traduzido do original e atualizado a 6 de Julho de Climate Feebacks Start To Kick In More de Sam Carana, publicado no blogue Arctic News, a 25 de Junho de 2016.

Standard
Temperaturas anómalas na Sibéria em Junho 2016
Sam Carana

Temperaturas Altas no Ártico

Aquecimento dos Oceanos ou Calor Oceânico Global

Conteúdo de Calor Oceânico Global (Aquecimento Oceânico) – Média dos 3 meses de Janeiro a Março de 2016 – Média anual de 2015 – Média pentadal (5 anos) durante 2011-2015

O conteúdo de calor do oceano está a aumentar, como ilustrado pela imagem à direita. Onde o gelo do mar está a diminuir, está a causar elevadas temperaturas do ar no Ártico.

Este ano (de Janeiro a Abril de 2016) no Hemisfério Norte, os oceanos estiveram 0,85°C ou 1,53°F mais quentes do que a média do século 20.

A imagem abaixo mostra como as temperaturas parecem prestes a ser elevadas na Sibéria na próxima semana. O painel à direita mostra anomalias na extremidade superior da escala na Sibéria Oriental a 5 de Junho de 2016, enquanto que o painel da direita mostra uma previsão para 12 de Junho de 2016.

Temperaturas anómalas na Sibéria em Junho 2016

Estas temperaturas do ar elevadas estão a causar feedbacks que estão, por sua vez, a acelerar ainda mais o aquecimento no Ártico.

Rios Mais Quentes

Temperaturas tão elevadas quanto 28.9°C ou 83.9°F foram registadas ao longo do rio Mackenzie perto do Oceano Ártico, a 13 de Junho de 2016, no local marcado pelo círculo verde.

Temperaturas elevadas no Ártico, no rio McKenzie

Abaixo está uma imagem de satélite do delta do rio Mackenzie, a 11 de Junho de 2016.

Imagem satélite do rio Mckenzie e Oceano Ártico sem gelo

A imagem abaixo mostra que temperaturas tão elevadas quanto 36.6°C ou 97.8°F estavam previstas para 13 de junho de 2016 sobre o rio Yenisei na Sibéria, que termina no Oceano Ártico.

temperaturas elevadas na Sibéria nas áuas do rio Yenisei que desagua no Oceano Ártico

Incêndios Florestais

No início deste mês, as temperaturas na Sibéria Oriental estavam tão elevadas quanto 29,5°C (85°F). Isto foi a 5 de Junho de 2016, num local perto da costa no Oceano Ártico (círculo verde).

Sibéria com temperaturas elevadas na costa do Oceano Ártico

Temperaturas do ar elevadas trazem um aumento do risco de incêndios florestais, como ilustrado pela imagem abaixo que mostra níveis de monóxido de carbono tão elevados quanto 2944 ppb a 4 de Junho de 2016 (no círculo verde).

Fumo e níveis de monóxido de carbono sobre Kamchatka resultam dos incêndios causados pelo aquecimento global

A imagem de satélite abaixo faz um zoom sobre a área com estas leituras de monóxido de carbono, mostrando incêndios na Península de Kamchatka a 3 de Junho de 2016.

Imagem de satélite mostra fumo dos incêndios florestais sobre Kamchatka

Perda de Albedo

A imagem à direita mostra que, este ano, a cobertura de neve de Abril no Hemisfério Norte foi a mais baixa do registo. A linha de tendência adicionada aponta para uma total ausência de neve até ao ano de 2036.A mais baixa cobertura de neve de Abril do registo com uma tendência a mostrar Abril sem cobertura de neve em 2036

O professor Peter Wadhams, chefe do Grupo de Física do Oceano Polar da Universidade de Cambridge, diz : “A minha previsão é que o gelo do Ártico pode muito bem desaparecer, ou seja, ter uma área de menos de um milhão de quilómetros quadrados, em Setembro deste ano.”

O aquecimento devido à perda de gelo e neve do Ártico pode muito bem ultrapassar os 2 W por metro quadrado, ou seja, pode mais do que duplicar o aquecimento líquido causado agora por todas as emissões de todas as pessoas do mundo, Peter Wadhams calculou em 2012.

Metano no Leito Marinho

Peter Wadhams foi ainda co-autor num estudo que calculou que a libertação de metano do fundo do mar no Oceano Ártico poderia contribuir com 0,6°C de aquecimento do planeta em 5 anos (vejam o vídeo com a entrevista de Thom Hartmann a Peter Wadhams, em baixo).

Impacto Combinado de Múltiplos Feebacks

Em conclusão, as altas temperaturas do ar no Ártico são muito preocupantes, uma vez que podem desencadear uma série de feedbacks importantes, como aqueles discutidos acima e outros feedbacks, tais como:

  • Mudanças na Corrente de Jato (Jet Stream). À medida que o Ártico aquece mais rapidamente do que o resto da Terra, ocorrem mudanças na corrente de jato. Como resultado, os ventos podem trazer cada vez mais ar quente bem para norte, resultando na perda da cobertura de neve e gelo do Ártico, que por sua vez resulta em ainda mais aquecimento do Ártico.
  • Rios Mais Quentes. As temperaturas de ar elevadas causam o aquecimento da água dos rios que desembocam no Oceano Ártico, resultando assim em declínio adicional do gelo do mar e em aquecimento do Oceano Ártico desde a superfície até ao leito marinho.
  • Incêndios Florestais. Elevadas temperaturas atmosféricas definem o cenário para os incêndios que emitem não apenas gases de efeito estufa como o dióxido de carbono e metano, mas também poluentes como o monóxido de carbono que depleta as hidroxilas que caso contrário poderiam degradar o metano, e o carbono negro que, ao cair sobre o gelo faz com que ele absorva mais luz solar (veja abaixo de perda de albedo), além de ser um forçador de clima quando na atmosfera.
  • Desestabilização do Solo. Ondas de calor e secas desestabilizam o solo. Solo que era anteriormente conhecido como permafrost e estava até agora segurado pelo gelo. Há medida que o gelo derrete, material orgânico no solo entra em decomposição, resultando em emissões de metano e dióxido de carbono, enquanto o solo se torna cada vez mais vulnerável a incêndios.
  • Perda de Efeito Tampão. A cobertura de neve e gelo do Ártico funciona como um tampão, absorvendo o calor que, na ausência deste tampão terá que ser absorvido pelo Oceano Ártico, como discutido em posts anteriores, como este.
  • Perda de Albedo. A cobertura de gelo e neve no Ártico faz com que a luz solar seja refletida de volta para o espaço. Na ausência dessa cobertura, o Ártico terá que absorver mais calor.
  • Metano no Leito Marinho. Há medida que os sedimentos no fundo do mar do Oceano Ártico aquecem, os hidratos contidos nesses sedimentos podem ser desestabilizados e libertar enormes quantidades de metano.
Quão mais quente poderia ficar dentro de uma década?

Os dois feedbacks mencionados por Peter Wadham (albedo e metano do fundo do mar) são retratados na imagem abaixo.

Albedo e Metano do fundo do mar, dois Feedbacks de auto-reforço e influência no aquecimento do Ártico

Ciclo de auto-reforço (feedback) 1: Aquecimento Acelerado no Ártico => Perda de gelo marinho => Mudança no Albedo => Aquecimento Acelerado no Ártico. Ciclo de auto-reforço positivo 2: Aquecimento Acelerado no Ártico => Enfraquecimento das reservas de metano => libertação de metano => Aquecimento Acelerado no Ártico.

O aumento combinado da temperatura global durante a próxima década devido a estes dois feedbacks (albedo e metano do fundo do mar), por si só, pode ser de 0,4°C ou 0,72°F para um cenário de baixo crescimento e pode ser de 2,7°C ou 4,9°F para um cenário de elevado crescimento.

Além disso, à medida que a temperatura sobe, mais feedbacks irão contribuir mais fortemente, acelerando ainda mais o aumento da temperatura, como também discutido em posts anteriores, como este.

Quando também incluindo mais feedbacks, o aquecimento pode exceder 10°C (18°F) dentro de uma década, assumindo que nenhum geoengenharia terá lugar dentro de uma década, como discutido em posts anteriores, como este.

A situação é terrível e apela a uma acção abrangente e eficaz, conforme descrito no Plano Climático.

Traduzido do original High Temperatures In Arctic de Sam Carana, publicado no blogue Arctic News, a 5 de Junho de 2016.

Standard