Temperaturas elevadas anormais no Ártico em Novembro
Robertscribbler

Para O Oceano Ártico Acima de 80 Norte, Ainda é Verão em Novembro

Vai ser o ano mais quente já registado – por uma grande margem. Basta perguntar a Gavin Schmidt da NASA, a qual a Administração Trump de negação da mudança climática colocou agora em risco. Mas numa região — o Ártico — a taxa de acumulação de calor tem sido escandalosamente extrema. E é aí que este novo recorde de aquecimento poderia causar alguns dos piores danos a um sistema Terra cada vez mais frágil.

Calor de Verão Durante o Outono Acima de 80 Norte

Para o Oceano Ártico acima da linha de latitude a 80 graus norte que circunda a crista do nosso mundo, as temperaturas hoje estão cerca de 17 graus Celsius acima da média. Estas são as mais elevadas temperaturas para esta região já registadas. E elas incluem várias localizações onde as temperaturas atingiram picos bem acima de 20ºC mais quente do que a média.

Comparação da temperatura ao longo do ano entre a média 1958-2002 e 2016

Temperaturas acima da linha de latitude de 80 graus norte em meados de novembro são quase iguais ao que normalmente se espera para o fim do verão. Este aquecimento recorde no Ártico é notavelmente grave e poderia produzir sérios impactos meteorológicos e climáticos a curto prazo. Fonte da imagem: DMI

Considerada no total, esta região — a qual inclui o Pólo Norte — está atualmente a experienciar temperaturas que normalmente iria ver a partir de 15 de setembro até 21 de setembro. Por outras palavras, está tão quente agora, a 14 de novembro na zona em torno do Pólo Norte, quanto normalmente estaria durante a última semana de verão.

Não seria tão mau se as temperaturas tivessem simplesmente disparado para novas máximas neste dia em particular como parte de uma variação louca da temperatura. Infelizmente, as leituras, em vez disso, permaneceram consistentemente elevadas durante todo o outono. Elas levitaram para fora da variação média da linha de base de 1958-2002 durante a maior parte dos 80 dias. E como as temperaturas se mantiveram perto das médias do fim do verão ou início de outono, a diferença em relação ao normal (representada pela linha verde no gráfico acima) continuou a intensificar-se ao longo de novembro. Essa manutenção a longo prazo de temperaturas altas corre o risco de produzir alguns impactos duradouros graves, tanto no Ártico como no ambiente global.

O Grande Buraco Vermelho do Pólo Norte

A variação de temperaturas que vemos agora não é nada menos que assombrosa e, para este observador em particular, aterrorizante. Um enorme buraco foi aberto no coração daquilo que deveria ser o pilar do frio de inverno. E se não se recompuser em breve, irá ter alguns sérios efeitos consequentes sobre o clima, incluindo piores mudanças atmosféricas de circulação, eventos climáticos cada vez mais extremos, os impactos nas estações de crescimento agrícola, impactos no gelo do mar, impactos no gelo da Groenlândia, e os impactos na vida do Ártico e além.

Temperaturas elevadas anormais no Ártico em Novembro

Hoje, grandes áreas do Oceano Ártico são esperadas que vejam as temperaturas atingirem 20 C mais quente do que o normal. Estas temperaturas são tão altas que secções recentemente cobertas de gelo vão, durante os próximos cinco dias, experienciar temperaturas entre -2 C e 0 C – ou quentes o suficiente para produzirem um derretimento temporário. Uma tal condição nunca foi testemunhada na medida em que é agora tão tarde no ano. Um sinal claro de que o aquecimento global está a começar a morder mais fundo do que esperávamos. Fonte da imagem: Climate Reanalyzer). Notem — o mapa mostra desvios de temperatura acima [desvio para o vermelho] e abaixo [desvio para o azul] da, já mais quente do que o normal, média da linha de base 1979-2000.

Este calor de outono recorde parece fazer parte de um cenário cada vez mais dominante do tipo “morte do inverno” relacionado com o aquecimento global causado pelo homem. E a menos que as temperaturas no Ártico voltem para a linha de base muito em breve, estamos em risco cada vez maior de atingir alguns pontos de inflexão de mudança de estado. Em particular, estes giram em torno de uma perda do gelo do Oceano Ártico a prazo mais curto do que o esperado. Um evento que podia acontecer este ano se experienciarmos um inverno anormalmente quente seguido por um verão quente semelhante ao último – mas que muitos especialistas esperam que seja adiado até 2030. Uma alteração que, a longo prazo, sob a queima continuada de combustíveis fósseis presentemente promovida pela Administração Trump, basicamente remove o inverno como estação praticamente por completo (pelo menos como a conhecemos).

Espero sinceramente que vejamos um retorno às condições de temperatura de linha de base no Ártico em breve. Mas à medida que os dias passam, isso parece cada vez menos provável. Ventos quentes continuam a fluir do [simple_tooltip content=’‘ bubblewidth=’700’]Barents[/simple_tooltip] e do [simple_tooltip content=’‘ bubblewidth=’547’]Bering[/simple_tooltip]. E os centros das regiões mais frias do Hemisfério Norte estão bem deslocadas para a Sibéria e a Gronelândia. Se esta situação continuar, as implicações para o gelo marinho de verão em 2017 podem ser bem duras (mais sobre isso na publicação que se segue). E é no ponto em que atingimos estados de verão sem gelo no Oceano Ártico que algumas alterações regionais, hemisféricas e globais muito radicais (as quais produzem efeitos ainda piores do que alguns dos maus resultados que já temos visto) estarão bem encaminhadas.

Traduzido do original
For The Arctic Ocean Above 80 North, It’s Still Summer in November
, publicado por Robertscribbler em http://robertscribbler.com/ a 14 de novembro de 2016.

Estes conteúdos são traduzidos e/ou legendados por voluntários motivados pelo desejo de facilitar o conhecimento a todos e assim melhorar as nossas vidas. Qualquer pessoa pode fazer o mesmo.
Para iniciar ou sugerir uma tradução, clique aqui.
Anúncios
Standard
Média anual da extensão do gelo marítimo 2012 - 2016
Sam Carana

Menos gelo marítimo, Oceano Ártico mais quente

A 2 de novembro de 2016, a extensão do gelo marítimo do Ártico estava num valor mínimo recorde para a época do ano, ou seja, apenas 7,151 milhões km².

gelo marítimo atinge valor mais baixo recorde

A atualmente muito baixa extensão de gelo marítimo está a arrastar ainda mais para baixo a média anual da extensão de gelo marítimo, que também está num valor mínimo recorde, como ilustrado pela imagem abaixo, do blog de Torstein Viðdalr.

Média anual da extensão do gelo marítimo 2012 - 2016

Não só está a extensão do gelo marítimo do Ártico muito baixa, o gelo marítimo está também cada vez mais fino, como ilustra a imagem abaixo, por Wipneus, que mostra o recente e dramático declínio da espessura do gelo marítimo do Ártico.

Comparação da espessura do gelo marítimo no Ártico 2012-2016

Como a animação de 30 dias do Naval Research Lab abaixo mostra, o gelo marítimo do Ártico não está a ganhar grande espessura, apesar da mudança de estações.

Espessura do gelo no Ártico em Outubro - Novembro 2016, em metros.

Espessura do gelo no Ártico em Outubro – Novembro 2016, em metros.

Nos dois vídeos em baixo, Paul Beckwith explica melhor a situação.

Paul Beckwith:

A recuperação do gelo marítimo está fod… este ano, verdadeiramente horrível de facto. À medida que o gelo se estende, definido como as regiões com pelo menos 15% de gelo, e tenta expandir pelo congelamento da água do mar, é derretido por temperaturas da superfície do mar extremamente elevadas. Então, a água arrefecida da superfície mistura-se pela ação das ondas com água mais quente tão profundo quanto 200 metros, e as misturas quentes na superfície continuam o processo de derretimento do gelo do mar. Sem uma recuperação forte do gelo, vamos atingir o estado para o qual nos dirigimos. Nomeadamente, zero gelo marítimo. Temos que quebrar este ciclo vicioso, ao declararmos uma emergência climática, e ao implementar o conjunto de soluções do banco-de-três-pés.

[Esta segunda parte encontra-se em tradução e em breve será adicionada à publicação Gelo do Mar no Ártico em Recuperação Difícil Sem Precedentes]

À medida que o aquecimento global aumenta a temperatura da superfície do mar e a da atmosfera sobre a superfície do mar, desenvolvem-se ventos cada vez mais fortes, resultando por sua vez em ondas mais fortes e maiores quantidades de água nas nuvens.

A imagem abaixo mostra a previsão para 9 de Novembro de 2016 de ondas tão altas quanto 13.76 metros (círculo verde no painel esquerdo) e quantidades totais de água de 1.38 kg/m² (círculo verde, painel direito, perto de Novaya Zemlya).

Previsão de ondulação e quantidade de água nas nuvens no Ártici a 9 de Novembro

Ondas grandes tornam difícil para o gelo marítimo de formar, enquanto a evaporação do oceano adiciona mais vapor de água para a atmosfera. Uma vez que o vapor de água é um gás de efeito estufa potente, isto acelera ainda mais o aquecimento do Ártico.

O péssimo estado do gelo marítimo indica que a água do Oceano Ártico está a ficar cada vez mais quente.

Temperatura do mar no Ártico a 31 de Outubro de 2016
A 31 de outubro de 2016, o Oceano Ártico estava tão quente como 17°C ou 62,7°F (círculo verde perto de Svalbard), ou 13,9°C ou 25°F mais quente do que 1981-2011. Isto indica o quão mais quente a água está abaixo da superfície, chegando assim ao Oceano Ártico a partir do Oceano Atlântico.

Em baixo está uma atualização da situação quanto ao metano. Contida nos dados existentes temos uma linha de tendência a indicar que os níveis de metano poderiam aumentar um terço até 2030 e quase duplicar até 2040.

Níveis de metano em 2016 e previsão até 2040

Porque é que o metano é tão importante? Numa escala de 10 anos, o metano causa mais aquecimento do que o dióxido de carbono. Em comparação com o CO2, o metano o Potencial de Aquecimento Global do metano aumenta quanto mais for libertado. O tempo de vida do metano pode ser estendida a décadas, em particular devido à depleção do hidróxido na atmosfera.

Potencial de aquecimento global do metano

Potencial de aquecimento do metano comparado ao CO2 e outros gases de efeito estufa.

Nefasto é o que mostra a imagem em baixo, a 9 de Novembro de 2016, os níveis de metano estavam tão elevados sobre o mar de Laptev (cor magenta sólido a norte da Sibéria).

Níveis de metano, Laptev, Sibéria

A imagem abaixo mostra que os níveis de metano a a 9 de Novembro de 2016 esavam tão altos quanto 2633 partes por bilião (a uma altitude ligeiramente mais elevada correspondendo à pressão de 469 mb).

Níveis de metano, Novembro 2016

As temperaturas sobre o Oceano Ártico estão previstas permanecerem elevadas, refletindo as temperaturas muito elevadas da água.

Temperaturas elevadas no Ártico a Novembro de 2016

O perigo é que, à medida que o aquecimento global continuar e a neve do Ártico e a cobertura de gelo continuarem a encolher, o aquecimento do Oceano Ártico irá acelerar e destabilizar os hidratos de metano contidos nos sedimentos do seu leito marítimo, provocando enormes erupções de metano que irão acelerar ainda mais o aquecimento. Isto poderia contribuir para um aumento da temperatura global de até 10°C ou 18°F durante a próxima década.

A situação é terrível e apela a uma ação abrangente e eficaz, conforme descrito no Plano Climático

Traduzido do original Less sea ice, warmer Arctic Ocean de Sam Carana, publicado no blogue Arctic News, a 4 de Novembro de 2016, atualizado a 11 de Novembro..

Estes conteúdos são traduzidos e/ou legendados por voluntários motivados pelo desejo de facilitar o conhecimento a todos e assim melhorar as nossas vidas. Qualquer pessoa pode fazer o mesmo.
Para iniciar ou sugerir uma tradução, clique aqui.
Standard
Calor e mancha de água fria do degelo invadem o Atlântico
Sam Carana

Calor do Oceano Invade o Atlântico Norte

A extensão do gelo marinho do Ártico a 19 de Junho de 2016 estava num recorde mínimo para a época do ano, como a imagem abaixo mostra.

Comparação da extensão do gelo marinho ao longo dos anos mostra recorde mais baixo para a época do ano - Junho 2016

Extensão do gelo do mar no Ártico com o último valor de 9,7 milhões de quilómetros | Comparação das médias de 1980, 1990, 2000, 2012, 2007, 2015 e 2016.

Não só está a extensão do gelo do mar no Ártico num valor baixo recorde para a época do ano, o gelo do mar também está rapidamente a ficar mais fino, mais fragmentado, inferior em concentração e de cor mais escura.

Gelo a norte da Gronelândia com rachas a quebrar.

Rachas no gelo do mar a norte da Gronelândia a 19 de junho de 2016, criado com a imagem Arctic-io

Na manhã de 20 de Junho de 2016, fortes libertações de metano foram registadas sobre a água a norte da Gronelândia, bem como a leste da Gronelândia, como ilustrado pela imagem abaixo.

Níveis de metano libertado no mar do Ártico em Junho 2016

A imagem abaixo mostra que, na manhã de 20 de Junho de 2016, os níveis médios globais de metano aumentaram em várias partes por bilhão numa grande faixa de altitude, em comparação com os dois dias anteriores. Os níveis de metano nas altitudes selecionadas para os dias de Julho de 2015 e Dezembro de 2015, foram adicionados para referência.

Comparação dos níveis de metano médios globais de 2015 e 2016

Clique na imagem para ampliar | Níveis médios de Metano para os dias selecionados comparando Dezembro e Julho de 2015 e Junho de 2016, com dados da NOAA

As temperaturas no Ártico estão a aumentar, como ilustrado pela imagem abaixo, mostrando que a 19 de Junho de 2016 as temperaturas estavam tão elevadas quanto 31.4°C ou 88.4°F sobre o rio Mackenzie (círculo verde), que termina
no Oceano Ártico (e, assim, aquece o Oceano Ártico ali).

Temperatura elevada no Ártico, no rio McKenzie, aquece o oceano

Temperaturas tão elevadas quanto 41.4°C no rio McKenzie (círculo verde) que vai dar ao Oceano Ártico e contribui para o seu aquecimento.

A 20 de Junho de 2016, o Sol irá atingir o seu ponto mais alto (Solstício), e o Árctico terá 24 horas de luz solar, ou seja, no Círculo Ártico (latitude 66,56° norte) ou superior. O Ártico tem cerca de 20 milhões (20.000.000) de quilómetros quadrados (7.700.000 milhas quadradas) de área e abrange cerca de 4% da superfície da Terra. A insolação durante os meses de Junho e Julho é maior no Ártico do que em qualquer outro lugar na Terra, como ilustra a imagem abaixo, por Pidwirny (2006).

Exposição do Ártico à luz solar ao longo do ano e no solstício

A temperatura da superfície do mar perto de Svalbard estava tão elevada quanto 55°F (12,8°C, no círculo verde) a 14 de Junho de 2016, uma anomalia de 19,6°F (10,9°C) em relação a 1981-2011, conforme ilustrado pela imagem abaixo.

Temperaturas elevadas do mar no Ártico

12.5°C de temperatura registados no mar de Svalbard no Ártico, uma diferença de 10.9°C em relação à média de 1981-2011.

Mancha / Tampa de água fria sobre o Atlântico e Pacífico

Manchas de água fria no Atlântico e Pacífico reveladas pela imagem da NASA com as anomalias da temperatura em relação a 1951-1980

A imagem acima, criada com nullschool.net, mostra ainda que a tampa de água fria que vinha crescendo de forma tão proeminente em extensão sobre o Atlântico Norte ao longo dos últimos anos, tem diminuído substancialmente. Em comparação, a área fria sobre o Pacífico Norte tem ficado maior. Isto é ainda confirmado pela imagem à direita, criado com mapas da NASA que mostram anomalias de temperatura do oceano para Maio de 2016.

A água do degelo fluiu em abundância da Gronelândia em 2016, como ilustrado pela imagem da NSIDC.gov abaixo. O escorrimento a partir do Alasca e da Sibéria para o Pacífico parece menor, em comparação, do que o escorrimento para o Atlântico Norte. Então, como pode ser que a área fria no Pacífico Norte tem ficado maior do que a área fria no Atlântico Norte?

Extensão do degelo / derretimento na Gronelândia em 2016, comparado a 1981-2010

Poderia haver outro factor que influencia o tamanho dessas áreas frias no Atlântico Norte e no Pacífico Norte?

A imagem abaixo, criada com imagens da NOAA, dá uma comparação entre a situação a 1 de Junho de 2015 (em cima) e 1 de Junho de 2016 (em baixo), mostrando anomalias em relação a 1961-1990.

Mancha de água fria do degelo sobre Atlântico e Pacífico

A diferença é surpreendente, especialmente quando considerando a força das anomalias mais frias (em relação a 1961-1990). Para além de água do degelo, algo mais deve estar a influenciar o tamanho e a força dessas anomalias no Atlântico Norte e no Pacífico Norte de maneiras diferentes. Muito provavelmente, a diferença é causada pela Correia Transportadora Oceânica (ou circulação termoalina), que está a levar água quente para o Atlântico Norte, enquanto leva água fria para fora do Atlântico Norte. No Pacífico Norte, está a fazer o oposto, ou seja, a trazer água fria, enquanto transporta água quente para fora do Pacífico Norte.

circulação termoalina aquece o Atlântico e arrefece o Pacífico alterando as manchas de água fria do degelo

A Correia Transportadora Oceânica ou circulação termoalina, aquece o Oceano Atlântico enquanto arrefece o Pacífico, revelando alterações nas manchas de água fria do degelo.

[Esta animação é um arquivo de 2,3 MB, que pode demorar algum tempo para carregar totalmente]

Em conclusão, existem vários fatores que estão a influenciar a situação, incluindo a influência que tem o El Niño e o impacto que a La Niña vai ter, e as mudanças nas correntes oceânicas. Mesmo que a correia transportadora possa ficar mais lenta, mais importante do que a sua velocidade é a quantidade de calor que vai levar para o Oceano Ártico. A imagem abaixo mostra uma tendência a apontar para a água no Hemisfério Norte a ficar 2 graus Celsius mais quente bem antes do ano 2030, em comparação com a média do século 20.

Temperaturas no Hemisfério Norte em 2016 e previsão futura

Se essas tendências continuarem ou mesmo se reforçarem, água cada vez mais quente será transportada do Atlântico Norte para o Oceano Ártico, contrariando o possível arrefecimento devido ao escorrimento resultante do degelo. Como o afluxo no Atlântico é cerca de 10 vezes maior em volume do que o afluxo no Pacífico, o resultado será ainda mais aceleração no aquecimento do Oceano Ártico.

Um Oceano Ártico mais quente irá acelerar o declínio do gelo do mar, fazendo com que mais luz solar seja absorvida pelo Oceano Ártico, sendo um dos mecanismos de auto-reforço (feedbacks) que estão a acelerar ainda mais o aquecimento do Oceano Ártico. O feedback # 14 refere-se ao calor (latente), que anteriormente foi para a fusão. Com o desaparecimento do gelo do mar, uma proporção crescente do calor do oceano é absorvida pelo Oceano Ártico.

Energia na fusão do gelo e aquecimento da águaÀ medida que o gelo do mar aquece, 2,06 J/g de calor vão para cada grau Celsius de aumento da temperatura do gelo. Enquanto o gelo está a derreter, toda a energia (em 334J/g) vai para transformar o gelo em água e a temperatura mantém-se a 0°C (273.15K, 32°F).

Uma vez que todo o gelo se transforme em água, todo o calor subsequente vai para o aquecimento da água, a 4,18 J/g para cada grau Celsius que a temperatura da água aumente.

A quantidade de energia absorvida pela fusão do gelo é tanta quanto a necessária para aquecer uma massa equivalente de água de zero a 80°C.

Comparação da espessura / concentração do gelo marinho entre 2012 e 2016

O gelo do mar está em má forma, como também ilustrado pela comparação da concentração acima, entre 24 de Junho de 2012 e uma previsão para 24 de Junho de 2016.

Comparação da espessura do gelo marinho no Ártico entre 2012-2016

Como a comparação acima mostra, o gelo do mar está agora também muito mais fino do que estava em 2012. O gelo marinho espesso costumava se estender metros abaixo da superfície do mar no Ártico, onde poderia consumir enormes quantidades de calor do oceano através do derretimento deste gelo em água. Como tal, o gelo marinho espesso agia como um tampão. Ao longo dos anos, a espessura do gelo do mar no Ártico diminuiu da forma mais dramática. Isto significa que o tampão que é utilizado para consumir grandes quantidades de calor do oceano levado pelas correntes marinhas para o Oceano Ártico, tem desaparecido agora em grande parte.

Calor do oceano vai destabilizar os hidratos de metano no fundo do mar (leito marinho) no Ártico

Espessura do gelo antes de 2012 | Gelo pouco espesso após 2012 | Calor do Oceano | Hidratos de Metano | Efeito Tampão desaparece

O perigo é que o calor vai chegar ao leito marinho (fundo do mar) e vai desestabilizar os hidratos de metano contidos nos sedimentos no fundo do mar do Oceano Ártico.

A situação é calamitosa e apela a uma acção abrangente e eficaz, conforme descrito no Plano Climático.

Traduzido do original Ocean Heat Overwhelming North Atlantic de Sam Carana, publicado no blogue Arctic News, a 17 de Junho de 2016.

Standard
Temperaturas anómalas na Sibéria em Junho 2016
Sam Carana

Temperaturas Altas no Ártico

Aquecimento dos Oceanos ou Calor Oceânico Global

Conteúdo de Calor Oceânico Global (Aquecimento Oceânico) – Média dos 3 meses de Janeiro a Março de 2016 – Média anual de 2015 – Média pentadal (5 anos) durante 2011-2015

O conteúdo de calor do oceano está a aumentar, como ilustrado pela imagem à direita. Onde o gelo do mar está a diminuir, está a causar elevadas temperaturas do ar no Ártico.

Este ano (de Janeiro a Abril de 2016) no Hemisfério Norte, os oceanos estiveram 0,85°C ou 1,53°F mais quentes do que a média do século 20.

A imagem abaixo mostra como as temperaturas parecem prestes a ser elevadas na Sibéria na próxima semana. O painel à direita mostra anomalias na extremidade superior da escala na Sibéria Oriental a 5 de Junho de 2016, enquanto que o painel da direita mostra uma previsão para 12 de Junho de 2016.

Temperaturas anómalas na Sibéria em Junho 2016

Estas temperaturas do ar elevadas estão a causar feedbacks que estão, por sua vez, a acelerar ainda mais o aquecimento no Ártico.

Rios Mais Quentes

Temperaturas tão elevadas quanto 28.9°C ou 83.9°F foram registadas ao longo do rio Mackenzie perto do Oceano Ártico, a 13 de Junho de 2016, no local marcado pelo círculo verde.

Temperaturas elevadas no Ártico, no rio McKenzie

Abaixo está uma imagem de satélite do delta do rio Mackenzie, a 11 de Junho de 2016.

Imagem satélite do rio Mckenzie e Oceano Ártico sem gelo

A imagem abaixo mostra que temperaturas tão elevadas quanto 36.6°C ou 97.8°F estavam previstas para 13 de junho de 2016 sobre o rio Yenisei na Sibéria, que termina no Oceano Ártico.

temperaturas elevadas na Sibéria nas áuas do rio Yenisei que desagua no Oceano Ártico

Incêndios Florestais

No início deste mês, as temperaturas na Sibéria Oriental estavam tão elevadas quanto 29,5°C (85°F). Isto foi a 5 de Junho de 2016, num local perto da costa no Oceano Ártico (círculo verde).

Sibéria com temperaturas elevadas na costa do Oceano Ártico

Temperaturas do ar elevadas trazem um aumento do risco de incêndios florestais, como ilustrado pela imagem abaixo que mostra níveis de monóxido de carbono tão elevados quanto 2944 ppb a 4 de Junho de 2016 (no círculo verde).

Fumo e níveis de monóxido de carbono sobre Kamchatka resultam dos incêndios causados pelo aquecimento global

A imagem de satélite abaixo faz um zoom sobre a área com estas leituras de monóxido de carbono, mostrando incêndios na Península de Kamchatka a 3 de Junho de 2016.

Imagem de satélite mostra fumo dos incêndios florestais sobre Kamchatka

Perda de Albedo

A imagem à direita mostra que, este ano, a cobertura de neve de Abril no Hemisfério Norte foi a mais baixa do registo. A linha de tendência adicionada aponta para uma total ausência de neve até ao ano de 2036.A mais baixa cobertura de neve de Abril do registo com uma tendência a mostrar Abril sem cobertura de neve em 2036

O professor Peter Wadhams, chefe do Grupo de Física do Oceano Polar da Universidade de Cambridge, diz : “A minha previsão é que o gelo do Ártico pode muito bem desaparecer, ou seja, ter uma área de menos de um milhão de quilómetros quadrados, em Setembro deste ano.”

O aquecimento devido à perda de gelo e neve do Ártico pode muito bem ultrapassar os 2 W por metro quadrado, ou seja, pode mais do que duplicar o aquecimento líquido causado agora por todas as emissões de todas as pessoas do mundo, Peter Wadhams calculou em 2012.

Metano no Leito Marinho

Peter Wadhams foi ainda co-autor num estudo que calculou que a libertação de metano do fundo do mar no Oceano Ártico poderia contribuir com 0,6°C de aquecimento do planeta em 5 anos (vejam o vídeo com a entrevista de Thom Hartmann a Peter Wadhams, em baixo).

Impacto Combinado de Múltiplos Feebacks

Em conclusão, as altas temperaturas do ar no Ártico são muito preocupantes, uma vez que podem desencadear uma série de feedbacks importantes, como aqueles discutidos acima e outros feedbacks, tais como:

  • Mudanças na Corrente de Jato (Jet Stream). À medida que o Ártico aquece mais rapidamente do que o resto da Terra, ocorrem mudanças na corrente de jato. Como resultado, os ventos podem trazer cada vez mais ar quente bem para norte, resultando na perda da cobertura de neve e gelo do Ártico, que por sua vez resulta em ainda mais aquecimento do Ártico.
  • Rios Mais Quentes. As temperaturas de ar elevadas causam o aquecimento da água dos rios que desembocam no Oceano Ártico, resultando assim em declínio adicional do gelo do mar e em aquecimento do Oceano Ártico desde a superfície até ao leito marinho.
  • Incêndios Florestais. Elevadas temperaturas atmosféricas definem o cenário para os incêndios que emitem não apenas gases de efeito estufa como o dióxido de carbono e metano, mas também poluentes como o monóxido de carbono que depleta as hidroxilas que caso contrário poderiam degradar o metano, e o carbono negro que, ao cair sobre o gelo faz com que ele absorva mais luz solar (veja abaixo de perda de albedo), além de ser um forçador de clima quando na atmosfera.
  • Desestabilização do Solo. Ondas de calor e secas desestabilizam o solo. Solo que era anteriormente conhecido como permafrost e estava até agora segurado pelo gelo. Há medida que o gelo derrete, material orgânico no solo entra em decomposição, resultando em emissões de metano e dióxido de carbono, enquanto o solo se torna cada vez mais vulnerável a incêndios.
  • Perda de Efeito Tampão. A cobertura de neve e gelo do Ártico funciona como um tampão, absorvendo o calor que, na ausência deste tampão terá que ser absorvido pelo Oceano Ártico, como discutido em posts anteriores, como este.
  • Perda de Albedo. A cobertura de gelo e neve no Ártico faz com que a luz solar seja refletida de volta para o espaço. Na ausência dessa cobertura, o Ártico terá que absorver mais calor.
  • Metano no Leito Marinho. Há medida que os sedimentos no fundo do mar do Oceano Ártico aquecem, os hidratos contidos nesses sedimentos podem ser desestabilizados e libertar enormes quantidades de metano.
Quão mais quente poderia ficar dentro de uma década?

Os dois feedbacks mencionados por Peter Wadham (albedo e metano do fundo do mar) são retratados na imagem abaixo.

Albedo e Metano do fundo do mar, dois Feedbacks de auto-reforço e influência no aquecimento do Ártico

Ciclo de auto-reforço (feedback) 1: Aquecimento Acelerado no Ártico => Perda de gelo marinho => Mudança no Albedo => Aquecimento Acelerado no Ártico. Ciclo de auto-reforço positivo 2: Aquecimento Acelerado no Ártico => Enfraquecimento das reservas de metano => libertação de metano => Aquecimento Acelerado no Ártico.

O aumento combinado da temperatura global durante a próxima década devido a estes dois feedbacks (albedo e metano do fundo do mar), por si só, pode ser de 0,4°C ou 0,72°F para um cenário de baixo crescimento e pode ser de 2,7°C ou 4,9°F para um cenário de elevado crescimento.

Além disso, à medida que a temperatura sobe, mais feedbacks irão contribuir mais fortemente, acelerando ainda mais o aumento da temperatura, como também discutido em posts anteriores, como este.

Quando também incluindo mais feedbacks, o aquecimento pode exceder 10°C (18°F) dentro de uma década, assumindo que nenhum geoengenharia terá lugar dentro de uma década, como discutido em posts anteriores, como este.

A situação é terrível e apela a uma acção abrangente e eficaz, conforme descrito no Plano Climático.

Traduzido do original High Temperatures In Arctic de Sam Carana, publicado no blogue Arctic News, a 5 de Junho de 2016.

Standard
Robertscribbler

Como um Titanic o El Nino Começa a Esmorecer, Que Problemas Frescos Trará um Mundo Quente Recorde?

Hoje o mundo está um pouco como que a levar para trás, com a resposta de uma superfície do mar e atmosfera aquecidos pelos humanos. Ao fim e ao cabo, o Dr. Kevin Trenberth estava certo. O aquecimento do oceano profundo resultante das emissões de combustíveis fósseis que prendem o calor e que se acumula ao longo das duas primeiras décadas do século 21 veio mesmo ressurgir das profundezas para nos assombrar em 2014, 2015 e 2016. Nessa mudança violenta do sistema climático global para o lado quente da variabilidade natural, um El Nino titânico emergiu. Foi um dos três mais fortes de tais eventos no registo moderno. Um que, por medidas da NOAA, parece ter igualado o evento extremo de 1998 no seu pico de intensidade.

Anomalias da temperatura de superfície do mar pelo ONI (Oceanic Niño Index) para o Niño 3.4

(Diferença da temperatura de superfície em relação à média no índice de referência da zona Niño 3.4 mostra que as anomalias de calor da superfície do oceano para o El Nino de 2015-2016 igualou os valores de pico de 1997-1998. Fonte da imagem: NOAA / CPC).

Calor, Seca e Tempestades São Esperados Juntamente com Algumas Surpresas Nefastas

Este evento empurrou realmente o mundo para um calor extremo, e até enquanto o tempo severo relacionado previsto se acendeu em algumas das regiões típicas. As temperaturas médias anuais globais dispararam para cerca de 1,06 C acima das linhas de base dos anos 1880 durante 2015, e até as diferenças mensais atingiram os 1,2-1,3 C ou mais acima do mesmo índice de referência durante dezembro e janeiro.

Entre este grande irrompimento de calor global, o mundo também experimentou ainda mais uma onda de secas estranhas (desta vez sobre o Norte da América do Sul, as Caraíbas, grandes faixas de África e do Sudeste Asiático), eventos de baixas em massa relacionadas com o calor, inundações, e os mais fortes furacões no registo. As medidas de gelo do mar do Ártico e Globais estão mais uma vez a mergulhar em novos mínimos históricos. Também um evento global de branqueamento de coral, talvez o pior desses casos alguma vez experienciado, foi desencadeado.

Os padrões e potenciais eventos de pior caso previstos (tais como baixas em massa por vagas de calor, branqueamento de corais, e perda de gelo do mar) foram também contrastados por uma série de surpresas. A primeira e talvez a mais nefasta foi o fracasso do El Nino em quebrar a seca da Califórnia. Embora a costa oeste dos Estados Unidos [EUA] tenha experienciado uma série de tempestades, o padrão foi mais típico da humidade normal de inverno para o Noroeste dos EUA até porque a seca continuou ao longo do Sudoeste. A humidade, por outro lado, tendeu a espalhar-se como uma mangueira de incêndio – com as tempestades quer a circularem para o norte para o Alasca, as Aleutas, ou o Mar de Bering, ou para o sul ao longo do sul do México ou da América Central, para cima através do Golfo e a saírem por uma zona de tempestade particularmente intensa que se forma no Atlântico Norte.

Anomalia de precipitação em 30 dias mostra a continuação da seca do sudoeste

(Nos últimos 30 dias, a seca do sudoeste reemergiu como um padrão bloqueado, novamente, começou a afirmar-se sobre a parte ocidental da América do Norte e o Pacífico oriental. Fonte da imagem: NOAA / CPC).

Esta perda de humidade contínua no sudoeste dos Estados Unidos, apesar de um El Nino recorde, é particularmente evidente na mais recente medida de anomalia de precipitação para os últimos 30 dias pelo Centro de Previsão do Clima (CPC). Aqui descobrimos que grandes partes da Califórnia do Sul e Central receberam apenas 10 a 50 por cento da precipitação típica para este período. Juntamente com as temperaturas de 1 a 3 C acima da média para o mês, esta perda de precipitação durante o que seria tipicamente o período mais chuvoso da Califórnia, chegou como uma decepção para muitos que esperavam que um forte El Nino iria ajudar a quebrar o estado desta seca incapacitante. Agora, a janela para as chuvas de final de inverno e início de primavera está a começar a fechar, ao mesmo tempo que o padrão de bloqueio parece estar fortemente restabelecido, tanto no padrão do tempo presente como nos modelos de previsão.

Mas talvez a maior surpresa vinda deste ano de El Nino tenha sido um conjunto de eventos climáticos no Atlântico Norte, que estavam provavelmente mais relacionados à mudança climática. Ali, tempestades severas martelaram um Reino Unido importunado pelas cheias enquanto uma Corrente de Jato [Jet Stream] muito distorcida lançou calor e humidade Equatorial para o norte – acelerando-as ao longo de uma Corrente do Golfo ridiculamente quente e aparentemente reforçada antes de as esbarrar numa piscina fria relacionada com o fluxo do degelo provavelmente da Groenlândia. Ali, o calor e a humidade colidiram com o frio para produzirem as épicas tempestades que, então, ventilaram a sua fúria sobre o Reino Unido.

Tempestade quente no Ártico

(29 de Dezembro viu as temperaturas subirem acima da linha de congelamento [zero] no Polo Norte – a primeira vez que as temperaturas aqueceram tanto nesta região alta do Ártico e tão tarde no ano. Fonte da imagem: Earth Nullschool).

Durante um desses eventos, uma cadeia de baixas pressões potentes no Atlântico Norte arremessou ventos fortes, chuvas intensas e ondulação épica no Reino Unido, enquanto o fluxo meridional desencadeado por estas feras poderosas empurrou temperaturas acima de zero graus bem até lá acima ao Polo Norte durante o final de dezembro. Ainda mais um evento sem precedentes e inesperado num ano quente recorde. Um que se parece mais com um aquecimento forçado pelos humanos que superou as influências tradicionais de El Niño, ao invés de um impacto relacionado com o El Nino em si.

Enquanto o El Niño Esmorece, o Calor Equatorial Tende a Mover-se para o Polo

Embora possamos ver estes dois eventos – o fracasso do El Niño em fornecer fortes chuvas à Costa Oeste dos EUA, e os pulsos massivos em direção ao norte de tempestades, calor e humidade que atingem o Atlântico Norte – como independentes, os padrões paralelos parecem estar ligados a uma amplificação polar em curso. No geral, o calor no Ártico tende a enfraquecer a Corrente de Jato do Hemisfério Norte sobre estas duas zonas. E mesmo durante o El Niño, quando o jato seria normalmente reforçado, continuámos a ver padrões de ondas de elevada amplitude a formarem-se sobre essas regiões.

Mas enquanto o El Niño enfraquece e o Equador esfria, a Corrente de Jato tende a diminuir ainda mais. Tal estado atmosférico tenderia a exagerar ainda mais os padrões de ondas já significativos da Corrente de Jato – transferindo ainda mais calor mais baixas latitudes em direcção aos pólos. Além disso, os ciclos oceânicos tendem a acelerar quando o El Niño enfraquece ou transita para La Niña. O resultado é um pulso amplificado de águas mais quentes, emergindo de latitudes mais a sul, que entram no Ártico.

É por estas razões combinadas – a tendência pós El Niño para amplificar a transferência de calor atmosférico de sul para norte para o Ártico, e a tendência para escoar águas mais quentes em direção a zonas do Oceano Ártico durante o mesmo período – que aparece que estamos a entrar num período de elevado risco para potenciais novos degelos do gelo marinho e possíveis degelos relacionadas do gelo terrestre da Gronelândia durante 2016 e 2017.

Bolhas quentes na temperatura de superficie do mar

(Bolha Quente do Nordeste do Pacífico permanece em alta intensidade, e até o seu tamanho está previsto para expandir em julho. Entretanto, temperaturas de superfície do mar muito quentes estão previstas a permanecerem ao largo da costa oriental. O efeito resultante destas duas bolhas quentes poderá ser o de empurrar a Corrente de Jato longe para a América do Norte durante o verão de 2016 – aumentando potencialmente o risco de calor e seca generalizados e potencialmente recorde. Superfícies do mar muito quentes previstas na região dos mares de Barents e da Gronelândia – excedendo os 3 C acima da média para uma região ampla – é igualmente motivo de preocupação. Isto não é apenas devido ao risco de perda de gelo marinho através desta zona, mas também devido ao seu potencial para desencadear a formação de um padrão de bloqueio e de cúpula de calor sobre a Europa Oriental e a Rússia Ocidental. Fonte da imagem: NOAA / CFS).

Além disso, estamos em sério risco de ver os bloqueios e os padrões de ondas de elevadas amplitudes restabelecerem-se e persistirem, especialmente na zona mais ocidental da América do Norte onde se espera que uma Bolha Quente do Nordeste do Pacífico relacionada a estes eventos se fortaleça com o desvanecer do El Niño. De facto, amplas regiões dos EUA podem cair num calor e seca recorde, ou próxima de recorde, este Verão, devido às influências combinadas de duas zonas do oceano muito quentes em torno das suas linhas costeiras. Os modelos agora indicam um risco de seca particular de final da primavera para a região dos Grandes Lagos, bem como um período prolongado de temperaturas muito acima da média para praticamente todos os EUA continentais durante o verão. Entretanto, precipitação primaveril acima da média prevista para o Sudoeste parece cada vez menos provável que surja.

Finalmente, prevê-se a intensificação de temperaturas extremas da superfície do mar acima da média nos mares de Barents e da Gronelândia durante o final do Verão de 2016. Esta é uma área a vigiar. O calor do oceano adicionado tende a puxar a Corrente de Jato para o norte para a Europa oriental e a Rússia ocidental – gerando risco de ondas de calor e secas para esta região, ao mesmo tempo que a Ásia Central cai num risco de inundações. Modelos CFS [Sistemas de Previsão Climática] de longo termo para a precipitação temperatura para a Europa ainda não detetaram este risco. Contudo, dada a intensidade do calor previsto para as superfícies do Mar de Barents e a tendência relacionada do calor sobre os oceanos e no extremo norte de influenciar a formação de padrões de bloqueio, cúpulas de calor, e calhas [da Corrente de Jato] de elevada amplitude, vale a pena manter um olho meteorológico sobre a situação.

El Nino a Enfraquecer para Depois Retornar; ou Estará uma Transição para La Niña em Curso?

Relacionado com a tendência, reforçada pelo do aquecimento polar e do oceano, para gerar ondas da Corrente de Jato de grande amplitude – bem como ondas de calor, secas e inundações persistentes associadas – está o equilíbrio térmico do Pacífico Equatorial. El Niños fortes, ou até mesmo uma tendência para permanecer dentro ou perto de um estado El Niño, tem, historicamente, ajudado na quebra de novos recordes de elevadas temperaturas globais, ao associar-se à tendência de aquecimento pelos gases de efeito estufa. Entretanto, a transição em direção a La Niña tendeu a reforçar uma série de situações relacionadas ao aquecimento global, incluindo eventos de chuva recorde e grandes injeções de calor em direção aos polos no decair de El Niño para La Niña.

A causa para o aumento do risco de grandes eventos de precipitação é o facto de o El Nino proporciona um sangramento maciço de humidade para a atmosfera, em tempos de pico de intensidade. Com o atual El Niño a chegar perto de níveis recorde e com as temperaturas globais superiores a 1 C acima da média de 1880, os níveis de humidade atmosférica globais estão a atingir novos recordes neste momento. Se as temperaturas globais caírem subsequentemente por volta de 0,1 a 0,2 C durante uma transição para La Niña (para um intervalo cerca de 0,9 a 0,8 C mais quente do que os valores de 1880), então a atmosfera não será capaz de manter uma grande porção dessa humidade adicional em suspensão e cairá como precipitação – espremendo principalmente onde as principais zonas de calhas se tendem a estabelecer. Devemos ser muito claros aqui ao dizer que o risco de seca relacionada com a intensificação da formação de cristas e cúpulas de calor pelo aquecimento global não é reduzido em tais instâncias – apenas que o risco de eventos extremos de precipitação é maior.

Onda de Calor Russa, Inundações no Paquistão e a Corrente de Jato

(Ao longo de 2011, quando o El Niño de 2010 se desvaneceu em condições de La Niña, uma onda de alta amplitude na Corrente de Jato desencadeou um calor recorde, secas e incêndios florestais sobre a Rússia, ao mesmo tempo que o Paquistão foi atingido por um dilúvio com um mês de duração que foi o pior evento de chuva para a região nos últimos 1.000 anos. A tendência da La Nina para espremer o excesso de água da atmosfera pode aumentar o risco de tais eventos ocorrerem num estado de aquecimento climático. Fonte da imagem: NASA).

Quanto aos riscos para o gelo do mar, fornecemos alguma da explicação acima. Contudo, é importante notar também que a mobilidade de calor em direção aos polos tende a ser reforçada durante os períodos em que o El Niño decai para La Niña. Durante estes tempos, o calor equatorial tende a propagar-se em forma de onda para os polos – especialmente para o Polo do Hemisfério Norte, o qual já perdeu a sua forte proteção pela Corrente de Jato que afastava invasões de ar quente.

Estes dois factores são questões importantes quando se considera se a La Nina ou um estado ENSO neutral irá aparecer após o El Niño durante 2016. Mas há um terceiro: a taxa de aumento da temperatura global. Apesar de o principal condutor do aquecimento global ser as emissões maciças de combustível fóssil humano, a resposta do sistema oceânico global pode abanar significativamente a taxa de aumentos da temperatura atmosférica numa escala de tempo de décadas. Se a tendência do oceano é para La Nina, isso tenderia a suprimir um pouco a taxa decenal global de aumento da temperatura – e nós vimos isso acontecer durante a década de 2000. Mas se a tendência do oceano é produzir El Niños (numa mudança para uma Oscilação Decenal do Pacífico positiva, como parece estar a acontecer agora), então o ritmo geral de aumento da temperatura atmosférica global tenderia a ser reforçado.

La Niña Emerge

(aplicações de modelos consensuais entre IRI/CPC mostram uma queda para uma La Nina fraca até o final do ano. Contudo, execuções do modelo SFC [imagem abaixo] tem mostrado uma tendência para prever um ressurgimento das condições de El Niño no Outono. Fonte da imagem: NOAA / CPC).

Chegando a este ponto descobrimos que o consenso de previsão do modelo oficial publicado pela NOAA (IRI/CPC figura acima) mostra uma transição para estados neutros ENSO em maio, junho e julho, os quais, em seguida, procedem a uma La Niña muito fraca no Outono. Numa tal queda, provavelmente ainda veríamos temperaturas altas globais recordes durante o período de 2016 (no intervalo de 1,03- a 1,15 C acima dos valores de 1880).

Contudo, a tendência, no final de 2016 e em 2017, para as temperaturas recuarem das novas altas recordes seria um de algum modo melhorada (provavelmente caindo abaixo do 1 C acima da marca de 1880 em 2017 ou 2018, antes de voltarem a desafiar o recorde de 2015-2016 com a potencial formação de um novo El Niño no tempo de 3 a 5 anos de 2019 até 2021). É importante notar que este cenário revela um risco aumentado de um pulso de ar quente mais forte ir em direção à zona Polar Norte, juntamente com um potencial adicionado para eventos extremos de precipitação, à medida que as temperaturas globais tenderiam a cair mais rapidamente a partir dos picos do final de 2015 e início de 2016.

El Niño Continua

(execução do modelo CFSv2 – mostra o El Niño a continuar até ao final de 2016. Nos últimos meses, a série CFSv2 mostrou uma elevada precisão. Contudo, a preferência atual de previsão da NOAA é para as previsões estabelecidas pelo modelo IRI [imagem anterior acima]. Fonte da imagem: NOAA / CPC).

Em contraste, a previsão do modelo CFSv2 da NOAA (imagem acima) mostra o El Niño apenas a enfraquecer até julho e, em seguida, refortalecendo-se no espaço de tempo de outubro a novembro. Este cenário do modelo CFS resultaria em temperaturas atmosféricas mais elevadas em 2016 – garantindo praticamente uma certeza, sem precedentes, de três anos quentes recorde consecutivos para 2014, 2015, e 2016. Mas tal cenário – implicando que o Oceano Pacífico teria entrado num novo período de tendência El Nino – tenderia também a manter as temperaturas atmosféricas mais próximo dos níveis recordes elevados recentemente estabelecidos.

No cenário CFSv2, podemos esperar que as temperaturas médias globais anuais subam tanto quanto 1,08 a 1,2 C acima dos valores dos anos 1880 durante 2016 (uma diferença muito extrema e um aquecimento desconfortavelmente próximo da marca de 1,5 C). Estes valores extremos iriam, talvez, diminuir para cerca de entre 0,9 e 1,1 C durante 2017, desde que o segundo pulso de El Nino não permanecesse por muito tempo. Contudo, se o ressalto de volta para condições de El Nino fosse forte o suficiente no final de 2016, haveria uma chance de que o mundo pudesse enfrentar não 3, mas 4 absolutamente detestáveis 4 anos quentes recorde consecutivos.

Tendencia da temperatura - NASA

(Durante 2015 a temperatura global anual disparou acima de 1 C mais quente do que os valores de 1880. Há pelo menos uma chance de 50% de que 2016 será ainda mais quente. Considerando a considerável tendência de aquecimento imposta por um aquecimento mundial forçado por combustíveis fósseis, quão pior pode ficar durante a segunda década do século 21? Fonte da imagem: NASA GISS).

Entretanto, o pulso de ar quente que vai em direção aos polos poderá ser um pouco silenciado neste cenário. Uma declaração que devia ser qualificada pelo facto de que já vimos uma quantidade substancial de calor de El Niño a ir em direcção aos polos durante o presente evento. Além disso, eventos de chuvas potencialmente pesadas poderão não receber a energia adicional de uma queda da temperatura global decente para espremer mais humidade. Uma declaração que requer a qualificação adicional de que a carga global de humidade atmosférica é reforçada pelo aumento das temperaturas globais – por isso, comparativamente menos precipitação pesada é um termo relativo aqui.

Neste momento, a NOAA favorece a previsão de uma transição para La Nina, afirmando:

Uma transição para ENSO (El Niño-Oscilação do Sul) neutro é provável durante o final da primavera do Hemisfério Norte ou início do verão de 2016, com uma possível transição para condições de La Niña pelo outono.

Contudo, vale a pena reiterar que as previsões do modelo CFSv2 têm sido bastante precisas em prever o caminho do atual El Niño recorde até à data.

Links:

NOAA / CPC

NASA GISS

Evento de Baixas em Massa por Efeito Estufa Atinge o Eqipto

Tempestade Mais Forte do Hemisfério Sul já Registada

Tempestade Penosa de Quatro Estações Agarra os EUA

Uma Estação de Degelo no Ártico Monstruosa Poderá Já Ter Começado

Aquecimento do Oceano Profundo Volta para nos Assombrar

Tempestade Quente no Ártico para Descongelar o Polo Norte

Mais Sinais do Abrandamento da Corrente do Golfo enquanto Inundações Devastam a Cúmbria em Inglaterra

Desconstrução do Tempo Selvagem da Ásia

Traduzido do original As a Titanic El Nino Begins to Fade, What Fresh Trouble Will a Record Warm World Bring?, publicado por Robertscribbler em http://robertscribbler.com/ a 25 de Fevereiro de 2016.

Outros blogues com publicações recentes sobre Alterações Climáticas em Português:

A Máxima Extensão do Gelo Marinho Já Foi Atingida Este Ano?

em https://alteracoesclimaticas…

Papel do Metano no Aquecimento do Ártico

em https://alteracoesclimaticas…

Standard
Gelo do mar no Ártico no recorde mais baixo
Sam Carana

Gelo do Ártico Continua num Recorde Mínimo para a Época do Ano

Sugerimos a leitura de “Gelo do Ártico Continua num Recorde Mínimo para a Época do Ano” no site Aquecimento Global: A Mais Recente Ciência Climática
 
Para a época do ano, o gelo do Ártico continua em num recorde mínimo desde que os registros de satélite começaram em 1979, tanto para a área como para a extensão. A imagem abaixo mostra a área de gelo do mar do Ártico até 12 de fevereiro de 2016, quando a área era de 12,49061 milhões de quilómetros quadrados.

Gelo do Ártico Recorde Mínimo em Fevereiro de 2016

A imagem abaixo mostra a extensão do gelo marinho do Ártico até 12 de fevereiro de 2016, quando a extensão era de 14.186 mil quilómetros quadrados.

Extenção do gelo marinho no Ártico Fevereiro 2016

A razão para o recorde mínimo de gelo marinho é que há mais calor do oceano do que costumava haver. A imagem abaixo mostra que, a 12 de fevereiro de 2016, a temperatura de superfície do mar no Oceano Ártico estava tão quente quanto 11,3°C (52,4°F) num local perto de Svalbard marcado pelo círculo verde, uma anomalia de 10,4°C (18,7°F).

Temperatura de Superfície do Mar no Ártico, 12 Fevereiro 2016

Anomalia da Temperatura de Superficie do Mar América do Norte

A razão para isto é que a água ao largo da costa leste da América do Norte é muito mais quente do que costumava ser.

A Corrente do Golfo está a empurrar o calor até ao Oceano Ártico.

A imagem à direita mostra que a 14 de fevereiro, 2016, as anomalias da temperatura de superfície do mar (em comparação com 1981-2011) ao largo da costa leste da América do Norte, estavam tão elevadas quanto 10.1°C ou 18.1°F (no local marcado pelo círculo verde ).

Enquanto que a superfície do mar parece mais fria (em comparação com 1981-2011) sobre uma grande parte do Atlântico Norte, uma quantidade crescente de calor do oceano parece estar a viajar por baixo da superfície do mar até ao Oceano Ártico, como discutido no post anterior no link.

Médias das anomalias da temperatura de superfície do mar em em diferentes latitudes do globo.

Isto significa más notícias para o gelo do mar em 2016, já que o El Niño ainda está forte. As temperaturas em janeiro de 2016 sobre o Oceano Ártico estavam 7,3°C (13,1°F) maiores do que a média de 1951-1980, de acordo com dados da NASA, como ilustra o gráfico à direita.

Anomalia da temperatura terrestre para Janeiro
Uma tendência polinomial adicionada à anomalia da temperatura em terra de janeiro no Hemisfério Norte desde 1880 mostra que uma subida de 10°C (18°F) poderia acontecer até ao ano de 2044, como ilustra o gráfico à direita. Ao longo do Oceano Ártico, pode-se esperar um aumento ainda mais dramático.

Como o mapa da NASA em baixo ilustra, a anomalia da temperatura terra-mar global para janeiro de 2016, em relação à média de 1951-1980, foi de 1,13°C (ou mais de 2°F) e o calor atingiu mesmo o Oceano Ártico mais fortemente do que noutros lugares.
Temperatura Terra-Mar Global Anomalia - NASA

Enquanto isso, níveis de metano tão elevados quanto 2539 partes por bilião (ppb) foram registados a 13 de Fevereiro de 2016, como ilustrado pela imagem abaixo.
Níveisde metano fevereiro 2016

O perigo é que, como o Oceano Ártico continua a aquecer, enormes quantidades de metano vão entrar em erupção de forma abrupta a partir do fundo do mar.

A situação é calamitosa e apela a uma acção abrangente e eficaz, conforme descrito no Plano Climático.

Actualização: a extensão do gelo do mar no Ártico continua a cair. No ano passado (2015), a máxima extensão do gelo marinho foi alcançada a 25 de fevereiro. Será que a extensão máxima para este ano já foi alcançada a 9 de fevereiro de 2016? A imagem abaixo ilustra esta questão. discutida mais adiante no grupo Arctic News.

Traduzido do original Arctic sea ice remains at a record low for time of year de Sam Carana, publicado no blogue Arctic News, a 15 de Fevereiro de 2016.

Outros blogues com publicações recentes sobre Alterações Climáticas em Português:

CO2 atmosférico Disparou para 405,6 ppm – Um Nível Não Visto em 15 Milhões de Anos

em https://aquecimentoglobaldesc…

Standard
A tampa de água doce no Atlantico e queda dos níveis de salinidade
Sam Carana

Papel do Metano no Aquecimento do Ártico

Sugerimos a leitura de “Papel do Metano no Aquecimento do Ártico” no site Aquecimento Global: A Mais Recente Ciência Climática
 

Oceano Ártico é o mais fortemente atingido pelo aquecimento global

Nos últimos 12 meses, o aquecimento global fez-se sentir mais fortemente sobre o Oceano Ártico, como a imagem acima ilustra. Na maior parte do Oceano Ártico, as temperaturas de superfície estavam acima do topo da escala, ou seja, mais de 2,5°C mais elevada do que em 1981-2010.

Em Janeiro de 2016, a temperatura do ar perto do nível do mar (a 925 hPa) estavam mais do que 6°C ou 13°F acima da média na maior parte do Oceano Ártico, como o NSIDC.org anunciou recentemente. Para além disso, as temperaturas médias diárias em muitas partes do Oceano Ártico muitas vezes ultrapassaram o topo da escala, ou seja, 20°C ou 36°F maiores do que em 1979-2000, como ilustrado pela previsão do Reanalisador Climático abaixo.

Temperaturas anormais no Oceano Ártico em Fevereiro

E então, como podem as anomalias de temperatura no oceano ártico nesta época do ano serem muito maiores do que em qualquer outro lugar na Terra?

Um fator são os feedbacks tais como alterações na corrente de jato e o declínio da cobertura de neve e gelo no Ártico, que faz com que cada vez mais luz solar seja absorvida pela água do Oceano Ártico, que por sua vez causa um declínio ainda maior, como discutido em muitos posts anteriores.

Alterações na corrente de jato

Neste momento, contudo, o aquecimento ao longo do Oceano Ártico é muito pronunciado numa altura do ano em que há uma diferença de temperatura mais ampla entre o Ártico e o Equador, quando há pouca ou nenhuma luz solar a atingir o Ártico. Assim, as mudanças no albedo são menos relevantes, enquanto que as alterações na corrente de jato seriam esperadas como sendo menos proeminentes agora. Todavia, uma corrente de jato fortemente deformada pode empurrar muito ar quente até lá acima ao Polo Norte, enquanto empurra muito ar frio do Ártico para a América do Norte, como ilustrado na previsão à direita.

Vejamos mais alguns fatores que estão a ter uma influência.

Níveis elevados de gases de efeito estufa sobre o Ártico

A questão era, por que está o aquecimento a atingir o Oceano Ártico tão fortemente nesta época do ano? Os níveis de gases de efeito estufa são mais elevados sobre o Ártico do que em qualquer outro lugar na Terra. Os gases de efeito estufa prendem o calor que seria, de outro modo, irradiadado para o espaço, e este efeito de estufa está a ocorrer durante todo o ano.

Níveis de CO2 em Fevereiro atingiram 405.83 ppm

Níveis de CO2 a 4 de Fevereiro de 2016. CLIQUE NA IMAGEM PARA AMPLIAR

 

Vamos olhar mais de perto para os níveis de dióxido de carbono (CO2). A 4 de Fevereiro de 2016, o nível de CO2 em Mauna Loa, no Havaí, foi 405,83 ppm, como ilustrado pela imagem à direita.

A imagem abaixo mostra que a média global do nível de CO2 a 6 de Fevereiro de 2016, foi de 407 ppm a uma altitude próxima do nível do mar (972 mb). A imagem também mostra níveis de CO2 mais elevados em latitudes mais elevadas a Norte, com níveis de mais de 410 ppm sobre a maioria do Hemisfério Norte.

Média níveis globais de CO2

Níveis de CO2 sobre o Ártico em Fevereiro 2016

Os níveis de dióxido de carbono a 8 de Fevereiro de 2016 foram tão elevadas quanto 416 ppm num local sobre o mar de Kara (marcado pelo círculo verde na parte superior da imagem à direita).

Todavia, os níveis de dióxido de carbono sobre o Oceano Ártico não estão muito mais elevados do que noutros lugares, ou seja, não é suficiente para explicar essas enormes anomalias de temperatura.

O metano, outro gás de efeito estufa, também está presente ao longo do Oceano Ártico em níveis que são mais elevados do que no resto do mundo, como ilustrado na imagem abaixo, mostrando níveis de metano acima de 1900 ppb na maior parte do Oceano Ártico a 4 de Fevereiro de 2016.

Níveis de metano no Ártico

No caso do metano, a situação é diferente daquela para o dióxido de carbono:

  • os níveis no Pólo Norte são mais do que 10% mais elevados do que no Polo Sul, uma diferença muito maior do que para o dióxido de carbono.
  • o metano está a atingir os seus níveis mais elevados sobre o Oceano Ártico a partir de Outubro em diante até bem dentro do ano seguinte.
  • o metano persiste por mais tempo sobre o Ártico, devido aos baixos níveis de hidroxila que lá existem.
  • os níveis de metano sobre o Oceano Ártico são elevados, já que cada vez maiores quantidades de metano estão a sair do fundo do mar no Oceano Ártico, fazendo com que este metano seja forçosamente altamente concentrado sobre o Ártico, especialmente logo após a sua libertação.

Em conclusão, parece que o metano está a desempenhar um papel cada vez maior no aquecimento do Ártico, especialmente tendo em conta a sua grande potência a curto prazo como gás de efeito estufa.

Emissões equivalentes ao CO2 noutrs gases de efeito de estufa

AMOC está a levar cada vez mais calor para o Oceano Ártico

Para além do metano, há uma outra grande razão pela qual as anomalias de temperatura são tão elevadas sobre o Oceano Ártico nesta época do ano. Enormes quantidades de calor estão a subir da água para a atmosfera sobre o Oceano Ártico, aquecendo o ar sobre a água. Quanto mais quente o mar, menos gelo se formará. Quanto mais fraco o gelo, mais rachaduras e locais onde o calor é transferido para a atmosfera.

A água do Oceano Ártico está a ficar mais quente, em comparação com anos anteriores, enquanto a Corrente do Golfo aquece. Ao referir toda a extensão do Golfo do México ao Oceano Ártico, esta corrente é muitas vezes referida como a Circulação de Revolvimento Meridional do Atlântico Norte (AMOC na sigla em inglês). A direção do fluxo da AMOC é determinada por duas forças, que são, o fluxo de água quente do equador para norte, e o fluxo para leste devido à força de Coriolis. O resultado é água quente salgada transportada pela AMOC nas camadas superiores do Atlântico em direção a nordeste, para o Oceano Ártico. Eventualmente, a água afunda e flui de volta como água mais fria pelas profundezas do Atlântico. Como a imagem da NOAA em baixo mostra, a quantidade de calor que tem sido carregado pela AMOC em direção ao Oceano Árctico tem vindo a aumentar ao longo dos últimos anos.

Transporte de carlor pela AMOC no Atlantico

As temperaturas globais do oceano estão a aumentar, como discutido em publicações como Calor do Oceano e Subida da Temperatura. Como resultado, mais calor está agora a ser levado em direção ao Oceano Ártico. A Corrente do Golfo ao largo da costa da América do Norte está a aquecer fortemente e está a empurrar mais calor em direção ao Oceano Ártico, em comparação com anos anteriores. O resultado é ilustrado pela imagem abaixo, mostrando enormes anomalias da temperatura de superfície do mar no Oceano Ártico perto de Svalbard, apesar da tampa fria no Atlântico Norte, indicando que o calor continua a viajar por baixo da tampa de água doce fria até ao Oceano Ártico.

Anomalias das Temperaturas no Ártico

Tais anomalias da temperatura de superfície do mar elevadas não são incomuns no Oceano Ártico nos dias de hoje. A imagem abaixo mostra que, a 24 de Janeiro de 2016, a temperatura de superfície do mar foi de 12,3°C ou 54,2°F num local perto de Svalbard, marcado pelo círculo verde, uma anomalia de 10,4°C ou 18.7°F.

Anomalia da Temperatura de Superficie do Mar no Ártico - Jan 2016

Água agora muito mais quente ao largo da costa da América do Norte

A água ao largo da costa leste da América do Norte está muito mais quente do que costumava estar devido a emissões que se estendem desde a América do Norte sobre o Oceano Atlântico devido à força de Coriolis. A imagem abaixo, a partir de um post anterior, mostra níveis de dióxido de carbono tão elevados quanto 511 ppm sobre New York a 5 de Novembro de 2015, e tão elevados quanto 500 ppm sobre a água ao largo da costa de New Jersey a 2 de Novembro de 2015.

Niveis de CO2 na América do Norte e Atlantico

A imagem abaixo mostra níveis de monóxido de carbono. O monóxido de carbono esgota a hidroxila, tornando mais difícil para o metano ser oxidado. Assim, novamente, o metano parece ser um fator importante.

Níveis de monóxido de carbono

Essas emissões aquecem a Corrente do Golfo e fazem com que água cada vez mais quente seja levada por baixo da superfície do mar até ao Oceano Ártico.

Tampa de água doce fria no Atlântico Norte

Finalmente, a tampa de água doce fria no Atlântico Norte faz com que uma menor transferência de calor ocorra do oceano para a atmosfera. Esta tampa de água doce fria faz com que mais calor esteja a fluir em direção ao Oceano Ártico, logo abaixo da superfície do mar do Atlântico Norte.

velocidade do gelo do mar e deriva

Esta tampa de água doce fria está a espalhar-se sobre o Atlântico Norte por uma série de razões:

    • mais derretimento dos glaciares na Gronelândia, em Svalbard e no norte do Canadá;
    • mais gelo do mar à deriva no Oceano Atlântico devido aos ventos fortes. Tempestades movem-se para cima no Atlântico de uma forma circular, acelerando a deriva do gelo do mar ao longo das bordas da Gronelândia, como ilustra este vídeo e imagem da Naval Research Lab à direita;
    • uma maior evaporação ao largo da costa leste da América do Norte, com a humidade a ser transportada por ventos mais fortes para o nordeste, resultando em mais precipitação sobre a água e, portanto, mais água doce a ser acrescentada ao Atlântico Norte, como ilustrado na imagem abaixo.

    Tampa de água doceno Atlanticodp degelo e precipitação

    Como a imagem acima também ilustra, esta tampa de água doce fria no Atlântico Norte também poderia resultar em mais calor a ser levado para o Oceano Ártico, devido à transferência de calor reduzida para a atmosfera a partir de água no seu caminho para o Oceano Ártico.

    temperaturas no ártico, ampa de água doce e precipitação no atlantico

    A imagem acima ilustra como as temperaturas mais elevadas ao longo do Ártico (painel superior) podem ir de mãos dadas com a tampa de água doce fria sobre o Atlântico Norte (segundo painel), com elevadas temperaturas da superfície do mar ao largo da costa leste da América do Norte (terceiro painel) e com maior precipitação sobre esta tampa de água doce fria (painel inferior).

    A imagem abaixo indica que a tampa de água doce fria no Atlântico Norte também anda de mãos dadas com a queda dos níveis de salinidade.

    A tampa de água doce no Atlantico e queda dos níveis de salinidade

    A precipitação sobre o Atlântico Norte está a aumentar, devido aos ventos fortes e tempestades ali, como discutido em publicações anteriores como esta e como ilustrado pelas imagens abaixo. Ventos mais fortes, tempestades com elevados níveis de precipitação e ondas mais altas podem todos contribuir para que a tampa de água doce fria se espalhe ainda mais por todo o Atlântico Norte.

    Ondas de17 metros ao largo das ilhas britânicas

    A imagem acima mostra que ondas tão altas quanto 17,81m ou 58,4 pés foram registadas no Atlântico Norte a 1 de Fevereiro de 2016, e tão elevadas quanto 17,31m ou 56,8 pés a 08 de Fevereiro de 2016.

    Ondas de 17 metros ao largo das ilhas britânicas

    Conclusão

    Em conclusão, o perigo é que cada vez mais calor vá chegar ao Oceano Ártico. Isso resultará em maior derretimento do gelo do mar, num ciclo de realimentação de auto-reforço que faz com que mais luz solar seja absorvida pelo Oceano Ártico (em vez de ser refletida de volta ao espaço, como antes).

    A 11 de fevereiro, 2016, o gelo marinho do Ártico teve – para esta época do ano – a menor extensão desde que os registos por satélite começaram em 1979, como ilustrado na imagem abaixo.

    Gelo do mar no Ártico no recorde mais baixo

    O maior perigo é que, como o Oceano Ártico continua a aquecer, enormes quantidades de metano vão escapar abruptamente do fundo do mar do Oceano Ártico, elevando dramaticamente as temperaturas sobre o Ártico e provocando cada vez mais erupções de metano, resultando numa escalada rápida para um aquecimento fugidio.

    A situação é calamitosa e apela a uma acção abrangente e eficaz, conforme descrito no Plano Climático.

    Traduzido do original Methane’s Role in the Arctic de Sam Carana, publicado no blogue Arctic News, a 11 de Fevereiro de 2016.

    Outros blogues com publicações recentes sobre Alterações Climáticas em Português:

    CO2 atmosférico Disparou para 405,6 ppm – Um Nível Não Visto em 15 Milhões de Anos

    em https://aquecimentoglobaldesc…

Standard