Temperaturas anómalas na Sibéria em Junho 2016
Sam Carana

Temperaturas Altas no Ártico

Aquecimento dos Oceanos ou Calor Oceânico Global

Conteúdo de Calor Oceânico Global (Aquecimento Oceânico) – Média dos 3 meses de Janeiro a Março de 2016 – Média anual de 2015 – Média pentadal (5 anos) durante 2011-2015

O conteúdo de calor do oceano está a aumentar, como ilustrado pela imagem à direita. Onde o gelo do mar está a diminuir, está a causar elevadas temperaturas do ar no Ártico.

Este ano (de Janeiro a Abril de 2016) no Hemisfério Norte, os oceanos estiveram 0,85°C ou 1,53°F mais quentes do que a média do século 20.

A imagem abaixo mostra como as temperaturas parecem prestes a ser elevadas na Sibéria na próxima semana. O painel à direita mostra anomalias na extremidade superior da escala na Sibéria Oriental a 5 de Junho de 2016, enquanto que o painel da direita mostra uma previsão para 12 de Junho de 2016.

Temperaturas anómalas na Sibéria em Junho 2016

Estas temperaturas do ar elevadas estão a causar feedbacks que estão, por sua vez, a acelerar ainda mais o aquecimento no Ártico.

Rios Mais Quentes

Temperaturas tão elevadas quanto 28.9°C ou 83.9°F foram registadas ao longo do rio Mackenzie perto do Oceano Ártico, a 13 de Junho de 2016, no local marcado pelo círculo verde.

Temperaturas elevadas no Ártico, no rio McKenzie

Abaixo está uma imagem de satélite do delta do rio Mackenzie, a 11 de Junho de 2016.

Imagem satélite do rio Mckenzie e Oceano Ártico sem gelo

A imagem abaixo mostra que temperaturas tão elevadas quanto 36.6°C ou 97.8°F estavam previstas para 13 de junho de 2016 sobre o rio Yenisei na Sibéria, que termina no Oceano Ártico.

temperaturas elevadas na Sibéria nas áuas do rio Yenisei que desagua no Oceano Ártico

Incêndios Florestais

No início deste mês, as temperaturas na Sibéria Oriental estavam tão elevadas quanto 29,5°C (85°F). Isto foi a 5 de Junho de 2016, num local perto da costa no Oceano Ártico (círculo verde).

Sibéria com temperaturas elevadas na costa do Oceano Ártico

Temperaturas do ar elevadas trazem um aumento do risco de incêndios florestais, como ilustrado pela imagem abaixo que mostra níveis de monóxido de carbono tão elevados quanto 2944 ppb a 4 de Junho de 2016 (no círculo verde).

Fumo e níveis de monóxido de carbono sobre Kamchatka resultam dos incêndios causados pelo aquecimento global

A imagem de satélite abaixo faz um zoom sobre a área com estas leituras de monóxido de carbono, mostrando incêndios na Península de Kamchatka a 3 de Junho de 2016.

Imagem de satélite mostra fumo dos incêndios florestais sobre Kamchatka

Perda de Albedo

A imagem à direita mostra que, este ano, a cobertura de neve de Abril no Hemisfério Norte foi a mais baixa do registo. A linha de tendência adicionada aponta para uma total ausência de neve até ao ano de 2036.A mais baixa cobertura de neve de Abril do registo com uma tendência a mostrar Abril sem cobertura de neve em 2036

O professor Peter Wadhams, chefe do Grupo de Física do Oceano Polar da Universidade de Cambridge, diz : “A minha previsão é que o gelo do Ártico pode muito bem desaparecer, ou seja, ter uma área de menos de um milhão de quilómetros quadrados, em Setembro deste ano.”

O aquecimento devido à perda de gelo e neve do Ártico pode muito bem ultrapassar os 2 W por metro quadrado, ou seja, pode mais do que duplicar o aquecimento líquido causado agora por todas as emissões de todas as pessoas do mundo, Peter Wadhams calculou em 2012.

Metano no Leito Marinho

Peter Wadhams foi ainda co-autor num estudo que calculou que a libertação de metano do fundo do mar no Oceano Ártico poderia contribuir com 0,6°C de aquecimento do planeta em 5 anos (vejam o vídeo com a entrevista de Thom Hartmann a Peter Wadhams, em baixo).

Impacto Combinado de Múltiplos Feebacks

Em conclusão, as altas temperaturas do ar no Ártico são muito preocupantes, uma vez que podem desencadear uma série de feedbacks importantes, como aqueles discutidos acima e outros feedbacks, tais como:

  • Mudanças na Corrente de Jato (Jet Stream). À medida que o Ártico aquece mais rapidamente do que o resto da Terra, ocorrem mudanças na corrente de jato. Como resultado, os ventos podem trazer cada vez mais ar quente bem para norte, resultando na perda da cobertura de neve e gelo do Ártico, que por sua vez resulta em ainda mais aquecimento do Ártico.
  • Rios Mais Quentes. As temperaturas de ar elevadas causam o aquecimento da água dos rios que desembocam no Oceano Ártico, resultando assim em declínio adicional do gelo do mar e em aquecimento do Oceano Ártico desde a superfície até ao leito marinho.
  • Incêndios Florestais. Elevadas temperaturas atmosféricas definem o cenário para os incêndios que emitem não apenas gases de efeito estufa como o dióxido de carbono e metano, mas também poluentes como o monóxido de carbono que depleta as hidroxilas que caso contrário poderiam degradar o metano, e o carbono negro que, ao cair sobre o gelo faz com que ele absorva mais luz solar (veja abaixo de perda de albedo), além de ser um forçador de clima quando na atmosfera.
  • Desestabilização do Solo. Ondas de calor e secas desestabilizam o solo. Solo que era anteriormente conhecido como permafrost e estava até agora segurado pelo gelo. Há medida que o gelo derrete, material orgânico no solo entra em decomposição, resultando em emissões de metano e dióxido de carbono, enquanto o solo se torna cada vez mais vulnerável a incêndios.
  • Perda de Efeito Tampão. A cobertura de neve e gelo do Ártico funciona como um tampão, absorvendo o calor que, na ausência deste tampão terá que ser absorvido pelo Oceano Ártico, como discutido em posts anteriores, como este.
  • Perda de Albedo. A cobertura de gelo e neve no Ártico faz com que a luz solar seja refletida de volta para o espaço. Na ausência dessa cobertura, o Ártico terá que absorver mais calor.
  • Metano no Leito Marinho. Há medida que os sedimentos no fundo do mar do Oceano Ártico aquecem, os hidratos contidos nesses sedimentos podem ser desestabilizados e libertar enormes quantidades de metano.
Quão mais quente poderia ficar dentro de uma década?

Os dois feedbacks mencionados por Peter Wadham (albedo e metano do fundo do mar) são retratados na imagem abaixo.

Albedo e Metano do fundo do mar, dois Feedbacks de auto-reforço e influência no aquecimento do Ártico

Ciclo de auto-reforço (feedback) 1: Aquecimento Acelerado no Ártico => Perda de gelo marinho => Mudança no Albedo => Aquecimento Acelerado no Ártico. Ciclo de auto-reforço positivo 2: Aquecimento Acelerado no Ártico => Enfraquecimento das reservas de metano => libertação de metano => Aquecimento Acelerado no Ártico.

O aumento combinado da temperatura global durante a próxima década devido a estes dois feedbacks (albedo e metano do fundo do mar), por si só, pode ser de 0,4°C ou 0,72°F para um cenário de baixo crescimento e pode ser de 2,7°C ou 4,9°F para um cenário de elevado crescimento.

Além disso, à medida que a temperatura sobe, mais feedbacks irão contribuir mais fortemente, acelerando ainda mais o aumento da temperatura, como também discutido em posts anteriores, como este.

Quando também incluindo mais feedbacks, o aquecimento pode exceder 10°C (18°F) dentro de uma década, assumindo que nenhum geoengenharia terá lugar dentro de uma década, como discutido em posts anteriores, como este.

A situação é terrível e apela a uma acção abrangente e eficaz, conforme descrito no Plano Climático.

Traduzido do original High Temperatures In Arctic de Sam Carana, publicado no blogue Arctic News, a 5 de Junho de 2016.

Anúncios
Standard
Paul Beckwith

Onde Estamos – Um Resumo do Sistema Climático, por Paul Beckwith

Sugerimos a leitura de “Onde Estamos – Um Resumo do Sistema Climático, por Paul Beckwith” no site Aquecimento Global: A Mais Recente Ciência Climática
 

Ar

A presença de GEE (gases de efeito estufa) na atmosfera é vital para sustentar a vida no nosso planeta. Estes gases de efeito estufa prendem o calor e mantêm a temperatura média de superfície global do planeta em cerca de 15°C, em comparação com uns gélidos -18°C, o que seria a nossa temperatura sem os gases de efeito estufa.

Nós alterámos a composição química da atmosfera, especificamente das concentrações dos gases de efeito estufa. As concentrações de dióxido de carbono aumentaram cerca de 40% desde o início da revolução industrial (de uma variação curta entre 180 e 280 ppm durante pelo menos os últimos milhão de anos) para 400 ppm. As concentrações de metano aumentaram em mais de 2,5 vezes desde o início da revolução industrial (de uma variação curta de 350-700 ppb) para mais de 1.800 ppb. O calor adicional detido tem aquecido o nosso planeta em mais de 0,8°C ao longo do século passado, com a maior parte desse aquecimento (0,6°C) a ocorrer nas últimas 3 a 4 décadas.

Oceanos

Mais de 90% do calor detido na superfície do planeta está a aumentar a temperatura da água no oceano. O aumento dos níveis de dióxido de carbono na atmosfera acidificam a precipitação, e aumentaram a acidez dos oceanos em cerca de 40% nas últimas 3 a 4 décadas (o PH do oceano aberto caiu de 8,2 para 8,05 na escala logarítmica). Uma queda acentuada para um PH de 7,8 impedirá que conchas com base em cálcio se formem e ameaçará toda a cadeia alimentar do oceano. Mudanças nas correntes oceânicas e os perfis verticais de temperatura estão a levar a uma maior estratificação e menos revolvimento, o que é necessário para o transporte de nutrientes para a superfície para que o fitoplâncton prospere.

Os níveis do mar globais estão atualmente a aumentar a uma taxa de 3,4 mm por ano, em comparação com uma taxa de cerca de 2 mm por ano algumas décadas atrás. As taxas de derretimento na Gronenlândia duplicaram nos últimos 4 a 5 anos, e as taxas de derretimento na Península Antárctica aumentaram ainda mais rápido. Com base nas últimas décadas, as taxas de derretimento tiveram um período de duplicação de cerca de 7 anos. Se esta tendência continuar, podemos esperar um aumento do nível do mar próximo de 7 metros em 2070.

Aumento da média global do nível do mar, prevista em 2,5 metros até 2040. Dados da NASA / GSFC com referência a 7/7/2014 e curva exponencial polinomial adicionada por Sam Carana para o Arctic-news.blogspot.com

Aumento da média global do nível do mar, prevista em 2,5 metros até 2040. Dados da NASA / GSFC com referência a 7/7/2014 e curva exponencial polinomial adicionada por Sam Carana para o Arctic-news.blogspot.com

Terra

As temperaturas médias globais mais elevadas aumentaram a quantidade de vapor de água na atmosfera em cerca de 4% ao longo das últimas décadas, e cerca de 6% desde o início da revolução industrial. Mudanças na distribuição de calor em latitude, resultantes do aquecimento desigual em latitude, desaceleraram as correntes de jato o que causou que se tornassem mais onduladas e fraturadas, e alteraram as estatísticas do tempo. Agora temos eventos climáticos extremos com maior frequência, intensidade e tempo de duração e também uma mudança nos locais onde ocorrem esses eventos.

Ciclos de Feedback

A sensibilidade do sistema climático ao aumento dos níveis de gases de efeito estufa parece ser muito maior do que o anteriormente esperado, devido a muitos feedbacks [mecanismos de retroacção] de reforço poderosos.

O Albedo é o efeito de reflexão da luz solar. Com o derretimento do gelo e da neve, diminui o efeito de Albedo e a quantidade de superfície escura e absorvente de calor é maior. 90% da radiação solar é reflectida pela superfície da água quando coberta de gelo e neve, mas apenas 6% é reflectido após o gelo derreter e a água encontrar-se a descoberto.

O Albedo é o efeito de reflexão da luz solar. Com o derretimento do gelo e da neve, diminui o efeito de Albedo e a quantidade de superfície escura e absorvente de calor é maior. 90% da radiação solar é reflectida pela superfície da água quando coberta de gelo e neve, mas apenas 6% é reflectido após o gelo derreter e a água encontrar-se a descoberto.

A amplificação da temperatura do Ártico pelo declínio exponencial do gelo do mar e da cobertura de neve primaveril são os feedbacks mais fortes no nosso sistema climático hoje. O albedo (refletividade) médio da região do Ártico diminuiu de 52% para um valor atual de 48% ao longo de 3 ou 4 décadas. O aumento da absorção de energia no Ártico tem aumentado a temperatura nas latitudes altas em taxas de até 6 a 8 vezes a da mudança da temperatura média global. A diferença de temperatura reduzida entre o Ártico e o Equador reduziu a velocidade na direcção oeste-leste das correntes de jato, tornando-as mais lentas, onduladas e fraturadas, e causando diretamente uma grande mudança nas estatísticas das nossas condições meteorológicas globais.

As emissões de gás metano têm vindo a aumentar rapidamente na região do Ártico a partir do permafrost terrestre e dos sedimentos marinhos da plataforma continental, principalmente na ESAS (Eastern Siberian Arctic Shelf) [Placa Continental do Ártico a Este da Sibéria]. A capacidade extremamente potente do metano para aquecer o planeta (o potencial de aquecimento global, GWP, é de 150, 86, e 34 vezes maior para o metano em relação ao dióxido de carbono numa escala de alguns anos, várias décadas, e um século, respectivamente) torna o aumento das emissões um risco extremamente perigoso para o nosso bem-estar no planeta.

A Minha Avaliação Geral

O nosso sistema climático está atualmente a passar por estágios preliminares de uma mudança climática abrupta. Se permitido continuar, o sistema climático do planeta é bem capaz de passar por um aumento da temperatura média global de 5°C a 6°C numa década ou duas. Precedência de mudanças numa taxa tão elevada podem ser encontradas inúmeras vezes nos paleo-registos. Da minha cadeira, concluo que é vital que cortemos as emissões de gases de efeito estufa e passemos por um programa intensivo de engenharia climática [ geoengenharia ] para resfriar a região do Ártico e manter o metano no seu lugar na permafrost e nos sedimentos oceânicos.

Paul Beckwith

Paul Beckwith

Artigo original em Arctic-news.blogspot.com por…
Paul Beckwith é professor a tempo parcial com o laboratório de paleoclimatologia e climatologia, Departamento de Geografia, Universidade de Ottawa. Paul ensina climatologia / meteorologia e faz pesquisa de doutorado em “Mudança Climática Abrupta no Passado e Presente”. Paul possui um Mestrado em física de laser e um Bacharel. em física de engenharia e alcançou o ranking de mestre de xadrez numa vida anterior. 

Standard